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Telescopic groups and symmetries of

combinatorial maps

Rémi Bottinelli, Laura Grave de Peralta
& Alexander Kolpakov

ABSTRACT In the present paper, we show that many combinatorial and topological objects,
such as maps, hypermaps, three-dimensional pavings, constellations and branched coverings of
the two-sphere admit any given finite automorphism group. This enhances the already known
results by Frucht, Cori-Machi, Siraii-Skoviera, and other authors. We also provide a more
universal technique for showing that “any finite automorphism group is possible”, that is appli-
cable to wider classes or, in contrast, to more particular sub-classes of said combinatorial and
geometric objects. Finally, we show that any given finite automorphism group can be realised
by sufficiently many non-isomorphic such entities (super-exponentially many with respect to a
certain combinatorial complexity measure).

1. INTRODUCTION

A combinatorial (oriented, labelled) map is a triple M = (D; R, L) where D is a non-
empty finite set (called the set of darts) and R and L are two permutations of D with
L? = id. The orbits of L are conventionally called the edges of M, the orbits of R are
its vertices, and the orbits of R™!L are its faces. The map M is called connected if
the group (R, L) acts transitively on D. Unless otherwise stated, we shall assume all
maps to be connected.

A topological (oriented) map M = (3,;T) is an oriented (connected) genus g > 0
surface with an embedded graph I' such that the complement ¥, \I' is a collection of
disjoint topological discs. By providing a labelling on the half-edges of T (thus defining
its labelled darts), and thus obtaining a labelled topological map, one can recover the
permutations L and R, so that L encodes the identification of half-edges into edges,
and R encodes the positive cyclic order of half-edges around each vertex. Vice versa,
provided a combinatorial map, one can recover its corresponding topological labelled
counterpart by creating the faces (which are discs) by following the cycles of R7!L,
and then identifying their boundaries by using L. For more details, cf. [8, 13, 23].

One can define a more elaborate class of combinatorial objects (and the correspond-
ing topological objects) such as hypermaps [6]. A triple H = (D; R, L), where D is a
non-empty finite set of darts and R, L are permutation of D, is called an (oriented,
labelled) hypermap. The orbits of L are called the hyper-edges of H, the orbits of
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R are its hyper-faces. A hypermap H is connected whenever the group (R, L) acts
transitively on D (which will be our standing assumption).

A hypermap also naturally appears in the setting of an orientable genus g surface
Y, and a graph I' embedded in ¥, that satisfies the following properties:

(1) the complement 3, \ T is a union of topological discs called faces,

(2) the faces are properly two-colourable (e.g. into black and white), i.e. faces of
the same colour intersect only at vertices of I', and

(3) the corners of the white faces are labelled with the numbers 1,2,3,... in some
fashion, and a black face corner label is equal to the adjacent white face corner
label, when moving clockwise around their common vertex.

Then H = (¥,;T') is an oriented labelled topological hypermap.
The correspondence between the topological and combinatorial definitions is as
follows:

(1) each disjoint cycle of R is obtained from recording the corner labels of a white
face in a counter-clockwise direction,

(2) each disjoint cycle of L is obtained from recording the corner labels of a black
face in a counter-clockwise direction,

(3) each disjoint cycle of R™!L is obtained from recording the labels around a
vertex in a counter-clockwise direction.

We remark that condition (3) above is a consequence of (1) and (2).

The set of face labels becomes the set of darts of H, the white faces become hyper-
faces of H and the black faces become hyper-edges of H. Thus, the combinatorial and
topological definitions of an oriented labelled hypermap agree.

If L? = id, then each bigon in the hypermap H = (D; R, L) can be interpreted as
a pair of darts pointing in opposite directions, and thus H becomes a map, as defined
above.

We say that two oriented labelled (hyper-)maps M; = (D;Ri,L1) and My =
(D; Ra, Lo) are isomorphic if, in the combinatorial setting, there exists a permutation
T of D such that TRy = RoT and T' Ly = L,T. In the topological setting, two oriented
labelled (hyper-)maps M; = (X4;T'1) and My = (£,4;T'2) are isomorphic if there exists
an orientation-preserving homeomorphism 7 : £, — X, such that 7(I'y) = I'y and the
labelling of the corresponding half-edges is respected.

A rooted isomorphism will require only the root (a dedicated labelled dart) of one
(hyper-)map to be carried to the root of another.

Finally, an isomorphism is not required to respect the dart labelling, nor the roots.

The above definition allows us to generalise the setting of maps to higher-
dimensional objects, the so-called pavings. Namely, as defined in [1], a three-
dimensional oriented combinatorial map or, simply, a (combinatorial) paving, is a
quadruple P = (D;R,L,V), where D is a non-empty set of darts and R, L,V are
permutations of D such that Hp = (D; R, L) is a map (not necessarily connected), and

(1) the product LV is an involution,
(2) the product VR™! is an involution,
(3) none of the above involutions have fixed points.

A paving P is connected if the group (L, R, V) acts transitively on D. The notion
of (labelled, rooted) isomorphism for oriented combinatorial pavings is analogous to
the one for combinatorial maps.

We may also think of P as a quadruple P = (D; L, S,T), where D is the set of
darts and L, S,T are its involutions without fixed points. In this case it is easy to
see that letting V = LS and R = TLS produces the initial definition. As in the
case of two-dimensional maps, a combinatorial paving P has a topological realisation
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which, however, is not always a three-dimensional manifold (however, it’s always a
pseudo-manifold).

In order to assemble an oriented cellular complex Mp, as described in [20], we
first produce its underlying map Hp = (D; R, L), and realise each connected com-
ponent of H as a topological map, i.e. as a surface ¥¢ with an embedded graph I,
i =1,2,...,m, having labelled half-edges. Each surface ¥? represents the boundary
of a handle-body B?, and then the handle-bodies B’ become identified along their
boundaries in order to produce a labelled oriented cellular complex representing P
topologically. Indeed, the faces of X¥’s defined by the permutation R~'L are identi-
fied in accordance with the permutation V', and the conditions (1), (2), and (3) above
ensure that one face cannot be identified to multiple disjoint counterparts (implied
by (1) and (2)), and edges or faces cannot bend onto themselves (implied by (3)).
Also, conditions (1) and (2) ensure that Mp is an orientable topological space.

There are other generalisations of maps, hypermaps and pavings, such as constel-
lations, cf. the monograph [15] for more information and references.

One of the basic questions is understanding possible symmetries, or automorphisms
(i.e. unrooted self-isomorphisms), of any of the above defined objects. Those can be
understood by means of building a one-to-one correspondence between a class of
rooted (hyper-)maps M (or isomorphism classes of maps) on a set of dart D and
(usually, torsion-free) subgroups (or their conjugacy classes) of a given single group
AT, This correspondence will associate to each map M € M a subgroup Hys C
AT of index |D|. The origins of this technique draw back to the paper by Jones
and Singerman [13], and have been developed more in the recent works by Breda,
Mednykh and Nedela [3], Mednykh and Nedela [16, 17] for the purpose of solving
Tutte’s problem of (hyper-)map classification, cf. also [4, 5].

Let us consider the case of maps, as described in [3, 13]. Namely, the rooted maps
on n darts (where the root is always supposed to be marked 1) are in a one-to-one
correspondence with index n free subgroups of A" = Zx*Z,. Indeed, each free subgroup
H < A7 of index n produces a set of cosets D = AT /H of cardinality n, which can
be considered as a set of darts. The root dart here is the identity coset. A subgroup
of AT is torsion-free if and only if it is free, as a consequence of Kurosh’s theorem.
Thus AT = Z x Zy = (o) * {a) acts on D transitively, and its generators o and «
give rise to permutations R and L acting transitively on D. Thus, we obtain a map
My corresponding to a free subgroup H < A™T. Vice versa, given a map (D; R, L),
we have a homomorphism S : A* — (R, L) by setting S(¢) = R, S(a) = L. The
homomorphism S defines an action of AT on D, and the subgroup corresponding to
M is Hy; = Stab(1) < A*.

The above correspondence between the free subgroups of A* and rooted maps can
be extended to the case of hypermaps (with A = Z % Z = F5), or the so-called (p, q)-
hypermaps (with AT = Z,xZ, [5]), or 3-dimensional maps (also called pavings [1, 20],
with A+ = Zz * Zg * Zz [4])

The isomorphisms classes of all aforementioned objects correspond to the conjugacy
classes of free subgroups of A* [13, Theorem 3.7]. The symmetries (i.e. unrooted
self-isomorphisms) of a (hyper-)map M corresponding to a subgroup H < A* form
a group isomorphic to N(H)/H, where N(H) = {g € AT |gHg ! = H} is the
normaliser of H in A™ [13, Theorem 3.8].

In the sequel we shall study a more abstract question, namely the property of free
products of cyclic groups being “telescopic”, cf. Definition 2.1. Such a free product
T being telescopic allows us to realise any finite group I' as the “symmetry group”
N(H)/H of a suitable finite-index subgroup H < T'. Thus, one of our main results is
the following statement, cf. Theorem 3.7.
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THEOREM. Any free product of at least two non-trivial cyclic groups is freely telescopic,
except for the infinite dihedral group Dso = Zo * Zo.

If we allow the index of H to be sufficiently large, depending on the cardinality of
T, then a great deal of same index subgroups H with N(H)/H =T can be obtained,
cf. Theorem 6.1. More precisely, the following holds.

THEOREM. Let T be a finite free product of cyclic groups, different from ZoxZs. Then
for any finite group T, there exist constants A > 1, B > 0 and M € N such that for
all d=M the set F(T,T,d) = {free subgroups H < T of index < d with Np(H)/H =
T, up to conjugacy} has cardinality >ABd1°8d,

Finally, we translate our group-theoretic statements into the combinatorial lan-
guage of (hyper-)maps and pavings, cf. Theorems 7.1-7.3. Such a transition from
combinatorics to groups, to combinatorics again is an integral part of our approach.
First, we want to obtain some information about symmetries of a sufficiently compli-
cated combinatorial object. Next, we translate our questions about symmetries into
a question about the existence of (torsion-free) subgroups of a free product of cyclic
groups with some condition on their normalisers. This condition is formulated in terms
of combinatorial automorphisms of the subgroup’s Schreier graph, by analogy to the
approach introduced in [14, 24]. The symmetries of the corresponding Schreier graphs
appear more amenable to combinatorial analysis, which finally provides us with the
desired results both in group-theoretic and combinatorial terms.

REMARK. Soon after a draft of this paper appeared on the arXiv, the authors were
notified by Gareth A. Jones that his paper [12] contains similar results for a wider class
of group. In particular, by [12, Theorem 3], all hyperbolic (extended) triangle groups
are shown to be “finitely abundant”, which is equivalent to being telescopic for the
non-compact ones among them. Also, all subgroups produced in [12, Theorem 3] are,
in fact, torsion-free. The methods used in [12] and in our paper differ substantially,
as well as the emphasis in our work is on the quantitative aspects, such as counting
of combinatorial objects with given symmetries.

2. PRELIMINARIES

We first establish the necessary notation and provide some basic definitions. Let G
be a group, and H be a subgroup of G. Let Ng(H) = {9 € G : gHg~! = H} denote
the normaliser of H in G.

DEFINITION 2.1. We say that a group T is telescopic if for every finite group T there
exists a finite-index subgroup H < T such that Np(H)/H = T.

DEFINITION 2.2. If in the above definition we can always choose H to be a free subgroup
of T, we say that T is freely telescopic.

DEFINITION 2.3. A (di-)graph is a tuple (V,E,.: E — V,7: E — V), where V is the
set of vertices, E is the set of directed edges and t, resp. T, assigns to each edge e its
ingtial vertex (or origin) i(e), resp. its terminal vertex (or terminus) T(e). We shall
write Styv={e € FE : 1le) =v} and St_v:={e € E : 7(e) =v}. A morphism
of graphs ¢ : (V1, E1,11,71) — (Va, Ea, 12, T2) consists of a pair of maps ¢y : Vi — Vo
and ¢ : E1 — FEy such that 19 = ¢y and 7odp = dyre. If G is a (di-)graph,
then V.G will denote its set of vertices, and EG will be its set of edges.

A graph is labelled by the elements of a set S if a map p: E — S is given. Let
us write S-digraph for an S-labelled digraph. A labelled S-digraph G is called folded
(¢f. [21]) if, for any v € VG, the restrictions of p to Sty v and St_ v are injective,
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and G is called regular if they are bijective. A morphism of S-digraphs is a morphism
of digraphs satisfying padr = 1.

Recall that if G is a group generated by a set .S, and H < G is a subgroup of G,
then the Schreier graph Sche g(H) of H is an S-labelled regular graph having vertex
set the right cosets of H, and an edge H-g = H - gs from H - g to H - gs, labelled s, for
each element s € S and each coset H - g. The Cayley graph Cay(G, S) of G is defined
as the Schreier graph of the trivial subgroup {id} of G. Both Cayley and Schreier
graphs are generally considered with a basepoint: the coset H - e = H. When graphs
with basepoints are considered, their morphisms are assumed to send basepoints to
basepoints.

If a graph G has label set S C G, for some group G, and a vertex v € VG is
specified, then the set

L(G,v) = {labels of loops at v, evaluated in G}

forms a group, called the language of G at v (an empty loop gives the identity of G,
paths concatenation corresponds to taking products, and reversing paths corresponds
to taking inverses). Let ev : {words in S U S™!} — G denote the evaluation map, so
that L(G,v) = evopu (“loops at v”).

We also present a few key results that we make use of, most of which can be found
in [14, 21, 24]. First, recall Kurosh’s theorem.

THEOREM 2.4 (Kurosh’s Subgroup Theorem). Let G1,...,G,, be groups, and G =
*'_ G; be their free product. Then, any subgroup H < G of G has the form:

(#72y #52y wij Higwt)  F(X)
where each H;j is a subgroup of G;, F(X) is a free subgroup generated by a subset X
of G, and w;; is an element of G, for 1 <i<n and1 < j<m;.
Proof. See, for instance, the monograph [18, pp. 56-57]. O

LEMMA 2.5 ([14, Lemma 7.5]). If G is an S-digraph with S a subset of a group G,
then for any vertices vi,vs connected by a path p : v1 ~ ve with g = evou(p):

L(gvvl) = gL(g7U2)gil'

—1 1

Proof. If 1 is a loop at vg, then plp~! is a loop at vy, and ev u(plp~!) = gevu(l)g~t,
so that the conjugation by g maps elements of L(G,vs) to elements of L(G,v1), and
thus gL(G,v2)g~ ! C L(G,v1). Symmetrically, g~ L(G,v1)g C L(G,v2), and the result
follows. g

LEMMA 2.6 ([14, Lemma 4.2]). If A, B are S-digraphs and B is folded, then for any
vertices v € VA and u € VB, there exists at most one morphism of S-digraphs
¢+ A — B satisfying ¢(v) = u.
Proof. Follow paths; cf. [14, Lemma 4.2] or [21, 5.1 (c)]. O

Let Z,, = (s;|s?") denote the cyclic group of order p; € NU {oo}, for p; > 2,
while setting p; = oo yields Z (which will be our standard notation for the rest of the
paper).
LEMMA 2.7 ([22, Theorem 1.2)). Let G = Zy, * --- % Zy,, be a free product of cyclic
groups with generators S = {s1,...,sn}, assuming Z,, = (s;). There is a bijection
between the sets

A = “subgroups of G” and

B = “connected, reqular S-digraphs with a basepoint, such that for any s;, the edges

labelled by s; form cycles of length dividing p; < oo, up to isomorphism”.
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Moreover, free (equivalently, torsion-free) subgroups correspond to graphs with s;-
labelled cycles of length exactly p; < oo, and under this equivalence, the index of
a subgroup equals the number of vertices in the corresponding graph.

If, in a labelled digraph as in the lemma above, a cycle labelled by s; has length
a proper divisor of p; < 0o, such a cycle will be called degenerate, following [22]. An
element of B is a (G, .S)-Schreier graph, which is called non-degenerate, if it contains
no degenerate cycle.

Sketch of proof. The Schreier graph of the quotient Schg g(-) provides one direction
of the equivalence, while the language at the root L(-) proves the other. In order to
show the equivalence “free subgroup” <+ “no degenerate cycle”, one uses the fact that
a torsion element in G must be conjugate to an element of one of the factors, and vice
versa. 0

The equivalence of Lemma 2.7 can actually be generalised to arbitrary finitely
generated groups if one does not care about freeness: this is done (using a slightly
different language) in [24, Theorem 3.5].

PROPOSITION 2.8. Let S(H) = Schg s(H). Then Aut(S(H)) = Nq(H),/ H.

In the above statement, Aut denotes the group of automorphisms of a labelled
digraph without basepoint.

Proof. Let N := Ng(H), and let us consider the following map:
®: N — Aut(S(H))
n+— (¢, : Hg— Hng)

Then, ® is a well-defined surjective group homomorphism with kernel exactly H.

It is routine to check that ® is well-defined and is a homomorphism: this fact
depends on N being the normaliser of H. Let us verify its surjectivity.

Let ¢ be an element of Aut(S(H)) and let Hg be the image of H under ¢. Since ¢
is an automorphism, we have that

H = L(S(H),He) = L(¢(S(H)), ¢(He)) = L(S(H), Hg).

Also, we know that L(S(H),Hg) = g 'L(S(H), He)g, since changing the basepoint
changes the language by conjugation, as in Lemma 2.5. This implies H = ¢~ 'Hyg,
and thus g € N. Since S(H) is a regular graph, there is a unique morphism sending
H to Hg, so that ¢ = ¢4. Therefore, ® is surjective.

Finally, let us verify that ker ® = H. Let n be an element of ker ®. Then ¢,, =
ids(fr), which implies that Hn = H, and n € H. Conversely, for any h € H, ¢y is
readily seen to be the identity map, since Hh = H. Therefore, ker ® = H and the
claim follows by the first isomorphism theorem. O

3. FREE PRODUCTS OF CYCLIC GROUPS

In this section we show that any free product of (non-trivial) cyclic groups with at
least two factors is freely telescopic, with the obvious exception of Do, = Zs % Zo, the
infinite dihedral group.

From now on, let I' denote a finite group with generating set S. Let T be a finite
free product of cyclic groups Zy,, * --- * Zp , and X be the natural choice of its
generators (one per factor). We always assume that p; > 2 and, if T = Z, * Z,, also
that p > ¢ > 2, while p > 3.

We will proceed as follows, in order to prove that any T" as above is freely telescopic,
or equivalently, that any finite group I' is isomorphic to a quotient Ny (H)/H for H
a free finite-index subgroup of 7.
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3.1. PLAN OF PROOF.

(1) Some algebraic arguments (Lemmas 3.5-3.6) using Kurosh’s Subgroup Theo-
rem reduce the problem to free products of the form 7' = Z,*Z, (p > 3,q > 2)
aHdTZZQ*ZQ*ZQ.

(2) Then, Lemma 2.7 translates the question of finding a free subgroup H of T
into finding a non-degenerate (T, X)-graph G.

(3) By Lemma 2.8, the condition that Np(H ), H be isomorphic to I' is equivalent
to the condition that the automorphism group of G be isomorphic to I'. Hence,
the initial problem effectively reduces to finding a non-degenerate (7', X)-
graph with a given automorphism group.

(4) Starting with the Cayley graph Cay(T",S) of the finite group I', we replace its
edges and vertices by certain pieces of non-degenerate (T, X )-graphs (defined
in Section 4.3), so that the automorphism group is preserved, while obtaining
a valid Schreier graph for a finite-index free subgroup H of T.

3.2. Basic caAses. We start first by proving that Z, * Z4, with p > 3, ¢ > 2, and
Zo x iy x Zo are freely telescopic. These are the “base cases” for the general statement
that follows in Theorem 3.7.

PROPOSITION 3.1. The free product Z, x Zq is freely telescopic for any p = 3 and
q=2.

PROPOSITION 3.2. The free product Zo x Zio x Zo is freely telescopic.

The proofs of these two results rely on a LEGO-like construction using pieces
of non-degenerate (T, X)-graphs, that we produce below. Once this is done, and
the necessary properties of the construction hold, the proofs will follow easily,
cf. Section 3.2.6.

3.2.1. Vertex splitting and gluing. Let us consider a Schreier graph S = Schy x (H) of
a subgroup H < T, where T' has generating set X. If Y C X, a vertex v of S is split
along Y if v is replaced by two vertices vy,vx_y, where vy keeps the Y-coloured
edges of v, and vx_y keeps its (X — Y')-coloured edges, as shown in Figure 1. We
shall call vy a dangling Y-coloured vertex. Observe that splitting vertices breaks
the X-regularity of the graph. If uy and vx_y are, respectively, Y- and (X — Y)-
coloured dangling vertices we say that uy and vx_y are complementary, and were
we to identify them, we would gain regularity back at the newly created vertex. With
this idea in mind, dangling vertices are seen as “connection points” for our graphs: an
Y'-coloured dangling vertex can only be connected to an (X —Y')-dangling vertex, and
once all dangling vertices of a graph are connected, the resulting graph is X-regular.
Let us call the identification of complementary vertices gluing.

Finally, if S is a Schreier graph of a free subgroup of 7, it has no degenerate
cycles. Since the operations of splitting vertices and gluing complementary ones do
not change the lengths of cycles of any given colour, as soon as regularity is gained
back by gluing all dangling vertices of some split graph, one gets the Schreier graph
of a free subgroup once again.

The following is now essentially obvious from the above considerations.

PROPOSITION 3.3. Let us choose Y & X and a finite number of Schreier graphs
S, = Schr x (H;) of free, finite-index subgroups H; of T. Consider their disjoint union
US;, in which we split a certain number of vertices along Y, and glue them, in com-
plementary pairs, so that the resulting graph is connected. Then we obtain a Schreier
graph for a free, finite-index subgroup of T
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\ Vg

— U —— Urp
FI1GURE 1. Before and after splitting an X-regular graph, with X =
{red, green, blue}, at a vertex v along Y = {r, b}

3.2.2. Sketch of the construction. Below we explain the main idea of the construction.
Let T be either Z, x Zq or Zg * Zy * Zo, with X its natural set of generators, and I"
be a finite group generated by a set S. Let us choose two X-coloured graphs, say L.
and L, obtained by splitting, respectively, one and two vertices in the Schreier graph
of a finite-index free subgroup of T, i.e. a non-degenerate (T, X)-graph. Call £, an
edge-link and L, a vertex-link. We shall also choose an easily identifiable and unique,
as we shall see in the sequel, vertex of L. to be its root, denoted r(L.).

We shall connect edge-links by gluing complementary vertices, so as to connect
them into chains, and call the result edge-graphs. Similarly, we shall connect vertex-
links but in a way to produce cycles of them, and call the result vertez-graphs. Finally,
in the Cayley graph C := Cay (T, S) of I, we shall replace the edges by edge-graphs and
the vertices by vertex-graphs, following the procedure of Section 4.3. Our construction
will ensure that

(1) the automorphism group AutC* of the resulting graph C* is the same as the
automorphism group of C, which is exactly I (by Proposition 4.1); and

(2) the graph C* is actually the Schreier graph of a finite-index free subgroup of
T (by Proposition 3.3).

From now on, if v is a vertex of a folded X-coloured graph, we write v -z ...z,
for the terminus of the unique path labelled x4, ..., x, and starting at v, if it exists.
Then, an equality of the form v-x1...2, = u-y1 ...y, holds if and only if both paths
in question exist and their termini are equal.

3.2.3. Constructing the links. Our construction differs slightly for T = Z,, * Z,; and
Zo % Lo * Z. In the former case, one uses a relatively generic construction, while the
latter is mostly ad-hoc.

CASE T = Zy, * Zq. Let us fix any p > 3 and ¢ > 2, let the corresponding generators
of each free factor of T be red and cyan and consider ¢ copies of a p-cycle with edge
labels r and vertices vy , ..., vp—1,; for each i-th copy, where 0 < ¢ < ¢ —1. Next, add
two “special” g-cycles labelled c:

Vo0 T 7 V10 T 7 V11 T 7 V12 T 7 ... T 7 VUig-2 ~ 7 Vo0,
and
Vo1 T 7 Vo2 T ... T 7 Vog—1 7 Vig—1 ~ 7 Vo,1-
Then, for each j > 2, draw an extra g-cycle labelled c:
V3,0 — Vi1 — ... — Vjq—1 — Vj.0-
In the case ¢ = 2, the extra g-cycles have the form vyoo — v1,0 — 9,0 and
Vo,g—1 — 7 Vlg-1 7 ... —7 Ugg—1.Let G, , denote the resulting non-degenerate

(Zy, * Zg,{r,c})-graph.
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Now, split the vertex vgo in order to produce an edge-link denoted L , and, sub-

sequently, split the vertex vpq—1 to get a vertez-link L} ,. The vertices obtained by
splitting vo,¢o will be denoted v4,v_, and those obtained by splitting vg 4—1 will be
called u4,u_. In the sequel, we swap the assignment of v} and v_ vertices for edge-
and vertex-links, as shown in Figures 2—4. This allows us to keep a consistent and
clear notation for all associated objects.
In the edge-link £} ., the vertex v 4—1 is unique in the following sense: this is the
only vertex v € VL7  that satisfies v-7 = v-c. Observe that the assumption p > 3 is
important here: if p = ¢ = 2, then once v - r = v - ¢, the vertex w = v - r also satisfies
w-r=w-c. Let then r(Lf )= wvp 41 be called the rootV) of L .

(0,1 T,1 2,1)
v_ 1,0 2,0)
(0,1) — (1,1 2,1) ‘
(0,0 1,0 2,0)
‘ U+
(a) The “product” graph Gs 2 (b) Splitting one vertex of L5,
u—
U+ )1 2, 1)
V+ 1, 0 2 )
v

(c) Splitting two vertices of L3 o

FIGURE 2. The “link” graphs for T' = Z3 *Zs: (a) the original graph;
(b) the result of splitting (0,0); (¢) the result of splitting (0,0) and
(0,1). The root of the edge link is (0, 1).

Some examples of “product graphs” and their splitting at one and two vertices that
generate edge- and vertex-link graphs are depicted in Figures 2-3.

CASE T = Zgy % Zo % Zs. Let the generators of the group T be red, green and blue.
Let Go,2 2 denote the graph (a) in Figure 4. In Gy 5 o, first split the vertex vr to get
an edge-link that we call £§ , 5, and then split v to get a vertex-link called L3 5 5.

(D1n the case of an edge- or vertex-link the notion of a root is practically opposed to the notion of a
root in a graph (map, hypermap, etc.). Indeed, the former is intrinsic to the respective combinatorial
structure, while the latter is a matter of choice and can be assigned arbitrarily
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0,3 (1,3)  (2,3) 3,3)
0,3 (1,3)  (2,3) ~(3,3) 027 (1,2) (22 (3;2)
(0,2 (1,2 (2]2 3,2 © (el 3/1)
(0 an @D 3,1) vz o @) 3,0)
o, w0 0 3.0) ~
(a) The “product” grai)h Ga s (b) Splitting one vertex of £5 4

U4 +3) (2,3) 3,3)

(0,2 (1,2) (2,2 3,2)

© ay e 3.1)

v+ (1ﬁ ) 3,0)

v

(c) Splitting two vertices of £} 4

FIGURE 3. The “link” graphs for T' = Z, *Z4: (a) the original graph;
(b) the result of splitting (0,0); (c) the result of splitting (0,0) and
(0, 3). The root of the edge link is (0, 3).

The vertices obtained by splitting the vertex v; will be denoted vi,v_, and those
obtained by splitting the vertex vy will be called w4, u_.

Observe that the vertices vg and v; are unique in £§ 5 5 in the following sense: they
are the only vertices v € VLS , , satisfying v-b = v-g. Furthermore, one can distinguish
vg from v as follows: while vy - Tgbgrgr = vy, it is not the case for vg. In other words,
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the path labelled rgbgrgr and starting at vy is a loop, but the one identically labelled
and starting at v is not. Let then (LS 5 5) = v1 be the root of LS 5 5.

1 0
3 2
3 2
11 10 5 4
11 10 5 4 \
8 9 7T—6
Ut
(a) The “product” graph (b) Splitting one vertex
U_
1 Ut
3 2
11 10 5 4
8§ —9 Ut 6
v_

(c) Splitting two vertices

FIGURE 4. The “link” graphs for T = Zg * Zs * Zy: (a) the original
graph; (b) the result of splitting 7; (c) the result of splitting 0 and 7.
The root of the edge link is encircled.

Let us write £V for any of £} . and L3, 5, and L for any of L7 , and L3 , 5. Since
the following constructions do not depend on the exact nature of those graphs, but
rather on their abstract properties, this ambiguity is harmless.
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ON THE BEHAVIOUR OF ROOTS. Let us define the following conditions
Py q(v) :=“v e VL,  satisfies v-r =v-c”,
Py 22(v) = “v € VLS , 5 satisfies v - rgbgrgr = v and v-b=v-g”,

and observe that the following statements hold for P = P, , or P22, whichever is
appropriate.

G.1 No vertex of a vertex-link £V satisfies P, and exactly one vertex r(£¢) of an
edge-link £¢ does.

G.2 Gluing edge- and vertex-links together by identifying complementary dangling
vertices does not create new vertices satisfying P, as long as the gluing is
done on vertices with disjoint neighbourhoods (where the neighbourhood of
a vertex v is the set of adjacent vertices.)

G3 If t : A — Bis an embedding of folded graphs (in our case 4 and B will
be obtained by gluing vertex- and edge-links), then the image of a vertex
satisfying P also satisfies P.

Of the above, G.1 holds by construction of the vertex- and edge-links and G.3 is
evident from the fact that “following the labels” and “passing to the image under an
embedding” are commuting operations. Only G.2 is not as direct. Let uy and vx_y
be complementary dangling vertices with disjoint neighbourhoods. Then, letting = be
a label in X — Y, y be a label in Y, and w be the result of gluing uy to vx_y, we
get w-x =vx_y -z and w-y = uy -y, which are distinct by the hypothesis. Since
both conditions P, , and P, 22 involve equalities of the form v -z = v - y, it follows
that no glued complementary vertices can satisfy them.

3.2.4. Constructing vertez- and edge-graphs. First of all, let us introduce some nec-
essary notation, which will also be used in Section 4.3, later on.

A wvertex-graph is a graph V), along with an injection x : S x {+,—} < VV, an
example of which is depicted in Figure 5. Let the boundary of a vertex-graph be
VY =imy.

An edge-graph for a label s is a graph &, along with two distinguished vertices
ht(&s) and h™ (&), as shown in Figure 6. We shall provide the general definitions of
the graphs V and &, below, which will be case-specific for different choices of T'.

In the Cayley graph C := Cay(T',S) of T', each vertex v will be replaced by an
isomorphic copy V, of V, and each edge e labelled s will be replaced by an isomorphic
copy &, of E. We shall also make the following identifications:

Ee 2 hT (&) ~ x(s5,+) € Vu, EDh (&) ~ x(s,—) €V,

whenever e has label s, origin u and terminus v, where h*(&,) € £, means a copy of the
vertex h*(&,) inside &, and similarly for other instances of vertex- and edge-graphs.
Let C* denote the resulting graph, and let ¢, : E,—C* and ¢, : V—C* be the
embeddings corresponding to an edge e € VC (with p(e) = s) and a vertex v € VC,
respectively. The image ¢.(€;) will be denoted by &, and the image ¢, (V) will be called
V,. Let h*(e) be the image of h*(&,) under ..
Finally, if an ordering on the labels s; < - < s, is given, then let

ciy ::( U Vv>u Uu u &l.
veVC j<i  e€EC
s.t.u(e)=s;

which means that CE;) is the subgraph of C* consisting of the vertex-graphs and only
the edge-graphs corresponding to the edges with labels s; for j < i.
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o

(5)
Uy

FIGURE 5. The vertex-graph V for |S| = 6. The squares represent the
connected vertex-links £V, the gray dots represent the vertices glued
along the way, while the cyan and red dots represent the remaining
dangling vertices, which are exactly the images of Y.

From now on, assume that the generating set S = {s1,...,8,} is ordered: s; <
So < -+ < sp. First, we consider the vertex- and edge-graphs that we use in the case
T =7,%Zq, withp>q,p >3, q2=2.

Vertex-graphs. Let us take |S| disjoint copies of the vertex-link £V from Section 3.2.3,
and call them ACQ(}O), ceey ES}'S‘*”, respectively. Observe that each graph EE,Z) has four

dangling vertices vgf), v(_i), ug), u(_i). In order to create the vertex graph V, identify each
USFZ) to w D medISD gor 0 < i < |S| — 1. Let us also define x : Sx{+,—} < VV

as x((si,+)) = ui) and x((s;,—)) = v, For a sketch of the resulting graph, see

Figure 5.

Note that in the case |S| = 1, only one vertex-link is used, and the fact that vf) is
(0)

glued to u(_o), and not to v>’, ensures that the hypothesis G.2 holds, so that no extra

root appears.

h+ (e)@) U(II,U(E) U@IU(—E) v%) 'Ugh (e)

FIGURE 6. An edge-graph of length 4. The squares represent the
connected edge-links £¢, and the cyan and red dots represent the
remaining dangling vertices, which are exactly h™(e) and h~(e).

Edge-graphs. For each s; € S, take i copies of the edge-link £¢ from Section 3.2.3, and
call them 4&1), T cS), respectively. Observe that each graph 58 ) has two dangling
vertices vfﬁ),v_j). Now, glue each v(_J) to USFJH), for 1 < j <i—1. Let & denote the
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resulting edge-graph, a sketch of which is depicted in Figure 6. The vertex v’ will
be referred to as h™(e) and o™ as h™ (e).
Note that the exact same construction works for T' = Zgy % Zg * Zo, when using

the corresponding objects, i.e. when L  is replaced by L3 5 5 and L3  is replaced by

(1)
Jr

€
2,2,2-

In both cases, letting P be the appropriate condition, i.e. either P, ; or P, 5 o, each
edge graph &; contains exactly @ vertices satisfying P: they are exactly the copies of
the root vertex r(L£°) satisfying P in the edge-link £°. Let 71(s;),...,7i(s:), where
ri(s;) € ££J )7 denote those roots. Observe that the vertex-graphs do not contain any
vertex satisfying P and that Aut(&;) = {id}, where the former follows by construction
and the latter follows from foldedness.

3.2.5. Substitution. Let C = Cay(T, S) be the Cayley graph of a finite group I' with
respect to a generating set S = {s1, $2,..., S, . Our goal is to prove that Aut(C*) =
Aut(C) which we can do by using the argument of Proposition 4.1 (cf. Section 4 for
its proof). Thus, we only have to show that the following conditions hold:
S.1 {p € AutV: dloy = iday} = {idy };
S.2 one can order the labels s1,..., s, in such a way that for any i € {0,...,n},
C(*i) contains no subgraph isomorphic to &, except for the subgraphs &, for
e € EC, u(e) = s;.

In the edge-link £¢, choose a shortest path from vy to 7(£°) and from (L) to v_,
and let wy and ws be their respective labels.

S.1 Recall that V is a folded graph. Let ¢ € Aut) be an automorphism with
¢loy = iday, and let v € IV be a vertex in the boundary of V. Then, since ¢
and idy agree at v, and V is folded, we have ¢ = idy. Thus S.1 holds.

S.2 Fix i € {0,...,n} and consider C;). Our goal is to show that C{;) contains
no other copies of & than those of the form &, for e an edge with label
u(e) = s;. Let r == r1(s;) be the root of the first edge-link in &;. Suppose that
there exists an embedding ¢ : & < C(;), and let us show that t(&;) is equal to
te(&;) for some e with label u(e) = s;.

We know that ¢(r) lies in an edge-graph because ¢(r) satisfies property P
by G.3 and no vertex of a vertex-graph satisfies property P. Let e € &, be
the edge such that «(r) lies in &, and sy := p(e). It is essential to notice that
in &, for any 1 < j < ¢ — 1, we have r;(s;)wowr = rj+1(s;). Similarly, in &,
for any 1 < j < k — 1, it holds that r;(e)wawi = rj+1(€e). A sketch of how
the roots and boundary vertices are arranged within an edge graph is given
in Figure 7.

We shall show that e has label s; and «(r) = ry(e). This is enough to
conclude that ¢(&;) equals ¢.(&;), since, by assumption, the embeddings ¢ and
te agree at a vertex r € &;, and thus must coincide by foldedness.

To this end, assume that e has label s, with k < ¢, and «(r) = r;(e),
necessarily with 1 < j < k. Then, we prove that k — j > i — 1, which is
equivalent, by using the constraints k <iand 1 < j <k, tok=147and j =1.

Let us assume, contrary to the above, that k—j < ¢—1. Following the path
labelled (wpwy)*~7*1 and starting at r = 71(s;) in &, we reach the vertex
Tk—j+2(si) in &, which is a root. We claim that r;(e)(waw:)*~9+1 is not a
root, which thus contradicts ¢ being an embedding, since 7;(e)(wawq )F =71 =
t(ri—jy2(s;)) is the image of a root.

First, let us consider the vertex r;(e)(waw1)¥=7 = ry(e). This is the last
root of &, so that ri(e)ws is in a vertex-graph: in fact, ri(e)ws = h™(e).
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Now, if 7 := 7;(e) (wawy ) ¥ 71 = ry(e) (waw; ) were a root somewhere in Chiy
then rj,(e)wy = 7wy ' would either be in the interior of an edge-graph, or of
the form ht(e’) for some edge €. Indeed, if 7 were the first root ri(e’) of
some &, then r1(e)w; ' = h*(e’) would hold. If it were a subsequent root,
then 7wy ' would lie in the interior of &.. In neither case can it be equal to
ri(e)wa = h™(e), and the desired contradiction is reached.

FIGURE 7. Edge-links assembled into an edge-graph, their respective
roots and boundary vertices.

3.2.6. Free telescopicity of Zy, * Zq and Zo * Lo * ZLs.

Proof of Propositions 3.1 and 8.2. Given T either Z, *Z, (p > ¢, p > 3, ¢ > 2) or
Zs * Lo * Zo with its natural generating set X (one generator for each cyclic factor),
and T' a finite group with generators S, let us substitute the edges and vertices of
C == Cay(T, S) by the vertex- and edge-graphs as described in Sections 3.2.4-3.2.5.

By Proposition 3.3, the resulting graph C* is a non-degenerate (7', X )-graph with
automorphism group

AutC* X AutC =T,

as verified in Section 3.2.5.

Let H be a finite-index free subgroup of T' with Schy x(H) = C*. Then, by
Lemma 2.8,
Since the procedure above can be performed for arbitrary I', both Z, x Z, and Z *
Zo x Z are freely telescopic. (]

3.3. ADDING FACTORS. The following lemma allows us to pull back telescopicity by
surjections. The only property not guaranteed in this case is freeness.

LEMMA 3.4. Let f : A — B be an epimorphism. Then, if B is telescopic, A is also
telescopic, although not necessarily freely.

Proof. Let T' be a finite group. Since B is telescopic, there exists a finite index sub-
group H < B such that Ng(H)/H = T. Consider H := f~*(H) < A, the preimage
of H in A. Clearly, H is a finite index subgroup of A since it is a preimage of a finite
index subgroup under an epimorphism.

We have that No(H) = f~*(Ng(H)). Indeed, let z be an element of f~*(Ng(H)).
By definition, this means that f(x) € Ng(H), and thus f(x)H = H f(x). By applying
f~1 to both sides, we obtain zH = Hz. The latter yields that z is an element of
Na(H). The reverse inclusion is analogous.

Thus, Na(H)/H equals f~'(Ng(H))/f ' (H). It remains to check that the quo-
tient group f~Y(Np(H))/f '(H) is isomorphic to Ng(H)/H = T. Let us consider
the map f : f~Y(Np(H)) — Ng(H)/H defined by f(z) = f(x)- H. Since f is a
surjective homomorphism with kernel ker(f) = f~!(H), the desired result follows
from the first isomorphism theorem. U
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The following lemmas are key to making an inductive step and proving the main
result stated as Theorem 3.7.

LEMMA 3.5. Assume that a product of the form T % Z,,, m > 2, is freely telescopic.
Then T x Zg x Zy is also freely telescopic, for all a, b > 2 such that lem(a,b) = m.

Proof. Let ¢ :=m/a, d :=m/b and consider the following morphisms:
ta : Lg = Loy,
[kla = [ck],,
and
Ly 2 Ly — Loy,
[k]y — [dK],,, -

Since t4([1]a) = [d]sm and p([1]p) = [¢]m, and ¢ and d are coprime, any element
of Z,, can be written as a sum of elements in the images of ¢, and ¢, by Bézout’s
theorem. Let us consider the surjective morphism ¢ : T % Z, % Zy, — T * Zy, induced
by the maps:

la i b = Loy by Ly = Lo, id:T — T.
Indeed, t4,t and id all extend to T * Z,,, while the universal property of the free
product yields ¢.

Since the generator [1],, of Z,, and all of T are in the image of ¢, the latter is
surjective. Also, the restrictions of ¢ to each of the subgroups T', Z,, and Z; are
injective since they correspond exactly to the post-compositions of id, ¢4, and ¢,
respectively, with their inclusions in T * Z,,.

Now, fix a finite group I" to be realised as a quotient “normaliser/subgroup” of
T +Zq*Zy,. We know, by the hypothesis, that there exists a free subgroup H < T'*Z,,,
of finite index, such that N(H)/H = T'. Since ¢ is surjective, ¢~ 1(H) is the desired
subgroup by Lemma 3.4, once we verify that it is free. To this end, assume that
¢~ 1(H) is not. Then, by Kurosh’s theorem, ¢~1(H) contains a conjugate of a non-
free subgroup of T, Z, or Zy. In the first case, there exists R < T non-free such that
¢~ Y(H) contains wRw™!, for some w, as a free factor. Then

H > ¢(wRw™") = p(w)p(R)p(w™") = ¢(w)Rp(w ™),
where the third equality stems from the fact that ¢ restricts to “the identity + inclu-
sion” on T', by definition. This implies that H contains a non-free subgroup, which is
a contradiction.
Similarly, assume that ¢~!(H) contains a free factor of the form wCw™!, with C
a non-free subgroup of Z,. Then we have

H 2 p(wCuw™") = ¢(w)p(C)p(w™") = p(w)ta(C)p(w™),
where, once again, the third equality stems from the fact that ¢, when restricted to
Zq, is just ¢4, plus the inclusion of Z,, in T'*Z,,. Since ¢, is injective, and C' is not free,
then ¢, (C) is not free either, so that H contains a non-free subgroup, which is again

a contradiction. An analogous reasoning applies if we assume that C is a non-free
subgroup of Zj, and the lemma follows. O

LEMMA 3.6. Assume that a product of the form T % Z,,, m > 2, is freely telescopic.
Then T % Z is freely telescopic.

Proof. As above, consider the morphisms id : T — T and q : Z — Z,,, together with
the induced surjective “composite” morphism

O T2 —T %Ly,
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In this case, the injectivity of ¢ on the Z-factor is not required: we already know that
any subgroup of Z is free. O

THEOREM 3.7. Any free product of at least two non-trivial cyclic groups is freely tele-
scopic, except for Lo * Zso.

Proof. If T = Zso * Zs, the infinite dihedral group, then the only Schreier graphs
associated with finite-index free subgroups of T are cycles, and T cannot be freely
telescopic (obviously, it cannot be telescopic at all). If T = I ,7Z,,. is a finite free
product of non-trivial cyclic groups with n > 2 and p; > 3 or n > 3, the proof
proceeds by induction on n.

If n = 2, then Proposition 3.1 yields that T = Z,, *Z,, is freely telescopic, assuming
that p; > 3 and ps > 2, without loss of generality. If n = 3, either each of p1, p2, ps
equals 2, in which case Proposition 3.2 yields free telescopicity of Zg x Zo * Zs, or,
without loss of generality, we have p3 # 2. In the latter case, Zy,, * Zicm(p,,ps) 18 already
freely telescopic, and Lemma 3.5 shows that Z,, * Z,, * Z,, is so, as well.

The inductive step towards n > 4 is made by using Lemma 3.5, with p;’s being
finite. Setting p; = oo, for any 4, also yields freely telescopic groups, by Lemma 3.6.
This concludes the proof of the theorem. O

4. GRAPH SUBSTITUTION

In this section we shall always consider directed labelled graphs. Our goal is to define
a reasonable condition that allows replacing vertices and edges of a Cayley graph by
other “chunks of graphs” in a way that preserves the automorphism group. All edges
having a fixed given label will be replaced by the same “chunk” of a suitable graph,
for each label, and a similar procedure takes place for all vertices. In what follows, let
I be a finite group generated by a finite set S, and let C := Cay(I', S) be its Cayley
graph.

4.1. VERTEX GRAPHS. If v is a vertex in the Cayley graph C = Cay(T",S), let Adj v
be the set of tuples consisting of edges adjacent to v and their orientations relative to
v, i.e. Adj v = (St v)x{+}U(St_v)x{—}. Let ¥ := Sx{+, —}, then each set Adj v
is naturally in bijection with 3: one can easily identify the corresponding pairs of
edge labels and their orientations relative to v. Let 7, : Adjv — X be this bijection,
to which we shall refer as the signature of v.

If V is a connected graph and x : ¥<=V'V is an injective map, then we call the pair
(V, x) a signed graph. Looking ahead, the map x will tell us how one should connect
the edges adjacent to a vertex v € VC to the vertices of V when replacing v in C by
V. The injectivity of x also comes useful later.

Let 0V := im x, which we shall call the boundary of V. Fix a signed graph (V, x),
and let

Aut(V, x) = {¢p € AutV : ¢lgy = idoy}
be the group of automorphisms of ¥V which restrict to the identity map on the bound-
ary 0. We shall call Aut(V, x) the group of signed automorphisms of (V,x).

Now let us consider the following condition, that will play an important role in

Section 4.4.

S.1 Aut(V, x) = {id}.
In other words, S.1 states that any non-trivial automorphism of V has to move some
vertex of its boundary 0V.

For a given vertex v € VC, a signed graph V can be inserted in place of v by
connecting each edge e € Adjv to the vertex x(7,(e)) € V. Broadly speaking, con-
dition S.1 forbids any automorphism local to V to appear when v is replaced by V.
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A graph V described above will be called the vertex-graph associated with v.

4.2. EDGE GRAPHS. The case of edge substitution is simpler: if s is a label, an edge-
graph for s is a connected graph & with distinct distinguished vertices hf and hj .
We substitute an edge e labelled s by first removing e, and then identifying the origin
of e with A and its terminus with h} .

4.3. VERTEX AND EDGE SUBSTITUTION. Below we describe the complete substitution
procedure. Recall that we start by considering the Cayley graph C of a group I' with
respect to generators S, as well as

e a connected signed vertex graph (V,x),
e a connected edge graph &, for each edge label s, with two distinct distin-
guished vertices h] and h; and trivial automorphism group Aut &, = {id}.

Let C’ be the result of replacing each vertex v of C with an instance of V as explained
in Section 4.1. More precisely, if v is a vertex with signature 7, : Adjv — X, we remove
v, insert a copy of V and connect each edge e € Adjv to the vertex x(7,(e)) of V.

Now, let C* be the result of replacing each “old” edge (i.e. an edge that is not in
any of the vertex graphs) labelled s in C’ by a copy of &, with h} identified with the
origin of e, and h_ with its terminus, as described in Section 4.2.

Here and below, copies of V will be always called “vertex-graphs”, and copies of &
will be “edge-graphs”.

For v € VC, write V), for the instance of the vertex-graph V inserted in place of v,
and let ¢, : V—=C* be the corresponding graph embedding. Similarly, for e € EC with
label u(e) = s, we shall write & for the instance of the edge-graph labelled s which
is inserted in place of e, and ¢, : £,—C* will be the corresponding graph embedding.

If e is an edge with origin u, resp. terminus v, and label s, then we identify ¢, (h})
with ¢, (x(s,+)), resp. te(hy ) with ¢,(x(s,—)). The vertex that we obtain after such
identification is shared between &, and V,, resp. V,,. We shall call these vertices h™(e)
and h~(e), respectively, in order to distinguish them in C*.

Observe that our construction implies the following:

e The vertex-graphs are disjoint from each other, since h¥ and h] are distinct
in any &, and so are the edge-graphs, by injectivity of x.

e The vertices of 9V, are exactly those of the form h*(e) for an edge e adjacent
to v in the initial graph C.

e ht(e) €V, if and only if u is the origin of e, and h™(e) € V), if and only if v
is the terminus of e.

hd X_lbgl(h-i_(e)) = (u(e), +), resp. X_1L171<h_ (e)) = (u(e), —), if u is the origin,
resp. the terminus, of e.

Finally, consider an ordering s; < --- < s, on the edge labels. Let, for each
i=0,...,n, CE‘i) be the subgraph of C* that consists of the vertex-graphs and only
the edge-graphs corresponding to the labels s; with j < 7. In other words, this is a
subgraph obtained by removing the “interiors” (i.e. everything but the vertices h*(e))
of all the edge-graphs corresponding to the labels s; for j > 1.

4.4. MAIN STATEMENT. Below we formulate the main statement regarding our graph
substitution procedure.
PROPOSITION 4.1. With the notation above, if S.1 holds, as well as if

S.2 one can order the labels sy, . .., $p in such a way that for any i € {0,...,n—1},
the graph CE“i) contains no subgraph isomorphic to &, except for the edge-

subgraphs E., for e € EC with label u(e) = s;,
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then
AutC* = AutC.

Here, condition S.2 ensures that under any automorphism of C* the instances of V),
resp. the instances of any &£, must be sent to each other. As can be understood from
the proof, any other condition ensuring this fact can be used instead of S.2. Then, it
is enough to define, given an automorphism of C*, a corresponding automorphism of
C by looking at the correspondence

{vertex / edge of C} +» {vertex-graph / edge-graph in C*}.

Condition S.1 ensures that not too much liberty is gained by making the aforemen-
tioned substitutions.

Proof of Proposition 4.1. For v € VC, recall that V, stands for the instance of V
inserted in place of v, and ¢, : V<—=C* is the corresponding graph embedding. For
e € EC, &, stands for the instance of the edge-graph with label p(e), inserted in place
of e, while ¢, : £,(¢)=—C" is the corresponding embedding.

Constructing a morphism B : AutC* — AutC. Fix an automorphism ¢ € AutC*.
We claim that, for any edge e € EC, there exists a unique ¢/ € EC such that ¢
restricts to an isomorphism ¢|g, : &, — & and p(e) = p(e’). From this follows that
¢ : hT(e) = ht(e/) and ¢ : h™(e) — h™(€), since £, has trivial automorphism
group.

Let, without loss of generality, s; < --- < s, be the ordering on the edge labels
required by condition S.2. We shall verify by reverse induction on 1 < i < n that

(%) if e has label p(e) = s;, then there exists a unique e’ such that ¢|g, is an
isomorphism from &, to &/, and u(e’) = s; (as noted above, this implies that
we have ¢|¢, : hE(e) = hE(e)).

If i = n, we know by the hypothesis (since condition S.2 is satisfied) that the only
subgraphs of C* = C(*n) isomorphic to &, are the graphs £ with e an edge labelled

$n. Fix such an edge: then ¢|g, defines an isomorphism onto its image, which must
therefore be of the form &/, for some €’ of label s,,. This provides the induction base.

Now, fix i < n— 1 and assume that property () holds for any ¢ +1 < j < n. Since,
for all i +1 < j < n, ¢ sends instances of &, to instances of &, and their vertices
h¥*(e) to themselves, it restricts to an automorphism of C(*i). Then, by applying S.2,
we know that ¢ must send an instance of &, to another one. Indeed, ¢[¢,, has range in
C(*i), while S.2 guarantees that its image must then be an instance of &,,. This proves
the induction step and our claim is thus verified.

Now, let us show that for each vertex v € VC, there exists a unique v’ € VC such
that ¢ restricts to an isomorphism ¢|y, : V,, — V.. Indeed, it follows from the above
that ¢ sends edge-graphs to edge-graphs, and boundary vertices (those of the form
h*(e)) to boundary vertices, hence it restricts to an automorphism of the subgraph
of C* consisting only of the vertex-graphs employed in the construction. The latter is
just a disjoint union of all vertex-graphs. Since ¢(V,) is connected, it must lie in some
V., and thus coincide with it.

Let ¢ := B(¢) be defined as follows: 1(v) is the unique v’ such that ¢ sends V, to
V,r, and ¥(e) is the unique €’ such that ¢ sends &, to ..

Observe that 1 is bijective since applying the above construction to ¢! yields an
inverse map to 1, and it remains to verify that 1 is actually a morphism of graphs,
i.e. 1 preserves adjacency.
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Recall that h™(e) € V, if and only if u is the origin of e. Fix an edge e € FC with
origin u € VC, such that h*(e) € V,. Let v/ := ¢(u) and €’ := ¢(e). Then

h+(€/) = ¢(h+(€)) € ¢(Vu) =V,

and since hT(e’) € V., v is the origin of ¢’. Replacing + by — and “origin” by
“terminus”, we conclude that v is indeed a morphism of graphs.

B is a homomorphism. Let ¢, ¢’ € Aut(C*) be two automorphisms, and suppose
that ¢ sends V, to V,s, while ¢’ sends V,» to V,». Then ¢'¢ sends V, to V,~, and
B(P'¢)(v) = 0" = B(¢')(B(P)(v)). An analogous statement holds for edges, and thus
9B is a morphism of groups.

Injectivity of B. Let ¢ be an element of AutC*. If e,e’ € EC are two edges, then
¢(&.) = & if and only if B(¢)(e) = €. If B(¢) = id, then we have that ¢(&.) = ..
However, edge graphs have trivial automorphism group, and thus ¢|¢, = id. Since the
graph C* is folded, we obtain that ¢ is the identity on C*.

Surjectivity of 6. Let v € AutC. Our goal is to find some ¢ € AutC* such that
B(¢) = 1. Define

e )t for every edge e € EC,

Ple. = ty(e)olte
@

By construction, we see already that, assuming ¢ to be a well-defined automor-
phism, its image under B is ¢, and it remains to verify that the piecewise definitions
above actually agree. The only vertices lying in two different subgraphs (one vertex-
and one edge-subgraph) are the boundary vertices. Fix an edge e with terminus v and
label s, such that ¢.(h;) = h~(e) = ty,(x(e,—)). Then

Ple. (B (€)) = ty(ete te(hy) = tyey(hy) = h™ (¥(e)),
Blv, (h7(€)) = ty(uyty "to(x(e; =) = Ly (x(e; =) = ™ (¥(e))

and ¢le, (h~(e)) = ¢|y, (h~(e)), as desired. Replacing — by + and “terminus” by
“origin”, we conclude that ¢|g, (hT(e)) = @|y, (ht(e)), as well.

Finally, observe that ¢ is an automorphism since the construction above applied
to 11, the inverse of 1, yields an inverse of ¢. O

v,) 5 for every vertex v € VC.

Ve = Lw(v)O(LU

5. ADDING MORE FACTORS

In this section we shall concentrate mostly on properties of telescopic groups, which
do not have direct applications to the combinatorial results from Section 7, and rather
stay on the purely group-theoretic side of our study.

PROPOSITION 5.1. Let Gy be a freely telescopic group and let G be a group having a
finite index subgroup H such that Ng,(H) = H. Then Gy * G is freely telescopic.

Note that, in particular, the free product of two freely telescopic groups is freely
telescopic. The proof follows the same kind of argument as Lemmas 3.5-3.6.

Proof. Let I be a finite group. Since G is freely telescopic, there exists a finite-
index free subgroup H; satisfying Ng, (H1)/H; = T'. By assumption, there exists a
finite-index free subgroup Hy < Gg such that Ng,(Hz)/Hs is trivial.

Consider the inclusions morphisms ¢; : G; — G1xGs, for i = 1,2, and the mor-
phism ¢ : G; * G3 — G1 XG5 induced by the universal mapping property of the free
product. The latter is easily seen to be surjective.
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Observe that Hy X H» is a finite index subgroup of G; X G35, and that the normaliser
N¢, xa, (H1 X Ha)/Hy X Hy is isomorphic to Ng, (Hy)/H1 X Ng, (H3)/Hs, while the lat-
ter is simply Ng, (Hy)/H;. Then, let us consider the preimage H of H, x Hy under
the morphism ¢ defined above. Since ¢ is an epimorphism, by Lemma 3.4, we have
immediately that Gy * Gs is telescopic. It remains to show that H = ¢~ L(Hy x Ho)
is a free subgroup of G * Gs.

By Kurosh’s Subgroup Theorem, H can be written as H = F(X)* (xui Ky u; ) *
(*jijgijj_l) for a number of subgroups K;; of Gi, K3 ; of Go, a subset X of
G1 x G and words u;, w; in G * Ga. If H were not free, then some of the K ;, Ky ;
would not be free either. Assume, without loss of generality, that K = K;; is not
free. Then, by construction, u; K ul_l is a non-free subgroup of H and thus

lur Kui") = ¢(ur)p(K)p(ur) ™" = ¢p(ur)pr(K)p(ur) ™"

is a non-free subgroup of Hy, by using the injectivity of ¢;. Therefore H; cannot be
free, and the proposition follows. O

6. AN ASYMPTOTIC ESTIMATE

THEOREM 6.1. Let T be a finite free product of cyclic groups, different from Zo *
Zo. Then for any finite group T, there exist constants A > 1, B > 0 and M €
N such that for all d=M the set F(T,T,d) = {free subgroups H < T of index <
d with Np(H)/H =T, up to conjugacy} has cardinality >AB41084,

The proof of the above theorem is conceptually simple. Fix the aforementioned
groups T, T and index d, and let N = N(T,T',d) be an integer whose dependence on
T,T',d will be clarified later. We shall verify that sufficiently many non-isomorphic
graphs H, on N vertices can be built, with respect to an additional parameter o,
introduced below. Then the previously used edge-links in the construction of the
Schreier graph for H < T (based on a Cayley graph of I') will be combined with
one of many possible choices of H,. Once we show that there are > AB?logd non-
isomorphic instances of H,, the result follows. On the other hand, the cardinality of
F(T,T,d) is < CP41°84  for some constants C > 1, D > 0, with d > M by [2]. Thus,
the growth type of the cardinality of F(T,T,d) is d?, and is independent of T and T.

One natural condition on the graphs H, is that they do not contain “roots” that
have property P from Section 3.2.3, i.e. vertices v for which

s v-r=v-c,if T =7Zy,+Zy (withp>q,p>3,¢>22),or

o v-rgbgrgr =vandv-b=v-g,if T =7y % Zo *xZso.
If an H, contained such a root, then the combination of an edge-link with H, would
not have a unique root any more.

The following lemma provides all the necessary details about constructing H,’s,
which is the first step towards the proof of Theorem 6.1.

LEMMA 6.2. Let T be Zy, % Zq, withp > q, p = 3, q = 2, resp. Lo * Ly * Zy. Then there
exist constants k, K > 0, such that for any N a multiple of pq, resp. N a multiple
of 8, we have at least K N*V non-isomorphic non-degenerate (T, {r,c})-graphs, resp.
(T, {r,g,b})-graphs, with two split vertices.

Proof. First, we treat the case T' = Z,, * Zq, with p > ¢, p > 3 and ¢ > 2. Let N be
a multiple of pg, and let us consider N vertices ordered as vg,...,vy_1. Similar to
Section 3.2.3, we start by drawing red p-cycles of the form

Ukp —7 Vkptl ~ 7 oo T 7 Ukpip-1 ~ 7 Ukp,
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for each K = 0,...,N/p — 1. Then we draw a cyan edge vg — wvi, which creates a
“double edge” from vy to v1, and continue by adding as few cyan ¢-cycles as possible
in order to obtain a connected graph, without creating any more double edges. Let
He denote the resulting graph.

One sees that since the initial graph is a disjoint union of red p-cycles, then < 2N/p
vertices will have to be joined by cyan edges in order to get a connected graph, and
then at most ¢ other vertices will be joined in order to close up the last cyan g-cycle.
Observe that at least N—2N/p—q > N/3—q > N/4 (for N large enough) vertices will
remain “free” in Hg. Let F' > N/4 be the exact number of remaining free vertices,
and let D :== | F|,, where |z], denotes the greatest multiple of ¢ that is smaller than
x, for any natural numbers ¢ and . Then, for N large enough, we also have D > N/4.

Now, let us consider any ordering o on the free vertices in Hg. By drawing cyan
edges between the consecutive vertices in o, and closing up the cycles when necessary,
any such choice of ¢ yields a non-degenerate graph H,,.

First of all, observe that after fixing a basepoint vy in Hg, the graphs H, and H,,
for any orderings o and 7, are basepoint-isomorphic if and only if H, = H,. Indeed,
since Hg < Ho, any isomorphism H, — H, restricts to an embedding Hgy — H-,
only one of which exists by foldedness: namely, the identity map.

Our next step is estimating the number of non-isomorphic graphs H,, as above,
without a basepoint. To this end, observe that two orderings o and 7 of the remaining
free vertices yield the same graph if and only if 7 can be obtained from o by a
permutation of the respective “g-blocks” (each consisting of the vertices in a cyan
cycle created in accordance with o or 7), as well as by cyclic permutations within
each “block”. Indeed, permuting the blocks, together with cyclic permutations inside
each block, obviously does not change the resulting graph. Also, if two orderings result
in the same graph, then the graph isomorphism implies that the orderings are equal up
to the aforementioned permutations. Thus, the number of non-basepoint-isomorphic
extensions of Hg by using orderings is

< D!
~ (/) gPl

However, since the resulting graphs will be used later on in the constructions of
“edge-links”, we do not want them to contain any double edges. This mean that no
vertices v with property P : v-r = v - ¢, except for vy — w1 (joined by a double
edge by construction) are allowed, since this would contradict the uniqueness of roots
(in the sense of having property P from Section 3.2.3).

We will therefore consider only the orderings that will not produce such edges.
Therefore, we start with D free vertices and at each step choose any of the remaining
vertices, with the restriction that no double edge be created. Observe that there are
three possible cases: the to-be-chosen vertex can be the first of a new cyan cycle, it
can lie in the middle of such a cycle or be its last one with respect to the chosen
ordering. In the first case, no restriction is imposed since choosing the first vertex of
a cycle does not create edges at all. In the second case, one edge is created, and thus
one vertex is “illegal” in the sense that choosing it would result in a double edge. In
the third case, two vertices are “illegal”.

We have to determine if any initial choice of vertices in cyan cycles can be extended
to a legal ordering as above. Such an extension may fail under certain circumstances:
e.g. if two vertices remain to be ordered, then no legal choice may be possible. In
order to circumvent this problem, we shall only consider orderings of D — ¢ vertices,
since any legal prefix of length D — g can be extended to a legal ordering of length D
(if ¢ = 2, then one has to consider orderings of the first D — 4 vertices instead).
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With the above points in mind, one readily sees that the number of legal orderings
is at least >(D — 2)(D —3)...(¢ — 1) = (D — 2)!/(¢q — 2)! Once again, taking into
account the fact that orderings yield non-basepoint isomorphic graphs if and only
if they are obtained one from another by permutations of the blocks and by cyclic
permutations within those blocks, we conclude the existence of

1 (D —2)!
(+) = I D/
(¢=2)! (D/q)'q"/a
legal choices of o defining non-isomorphic graphs H, without basepoint.
Now, take any H,, split its vertex v, and call the resulting graph H/ , while v,., v,
will be its dangling vertices. We claim that:

(1) each H. is connected,;

(2) if o and 7 are distinct (up to the aforementioned permutations), then H, and
H!. are non-isomorphic without basepoint;

(3) H! does not have double edges.

The first property holds since we split at the unique double edge of H,. The
second property follows from the fact any isomorphism between H. and H. must fix
the dangling vertices. Then, were the split graphs H/ and A/ isomorphic, then H,
and H, would be so. Finally, since we always split the vertex vy of H, at the end of
its unique double edge, none of the latter remains, and the third property is verified.

Thus we conclude the existence of as many as (x) non-isomorphic graphs H/,
without a root and having two dangling vertices. By invoking Stirling’s formula and
using the fact that D — 2 > % for D big enough, the desired asymptotic estimate
follows.

The argument for T = Zsg * Zo * Zo is similar and not spelled out in detail here.
First, we take IV a big enough multiple of 8 and then assemble a chain of alternating
red-green edges connecting N vertices. Finally, we estimate the number of different
graphs obtained by adding blue edges in an analogous way to the above argument. [

Proof of Theorem 6.1. Observe that it suffices to verify the statement for T' = Z, *Z,,
with p > ¢, p =2 3, ¢ = 2, and T = Zs * Zo * Zo, only. Indeed, for any surjection
f: G — K and any subgroups K1, Ko < K, their pre-images f~1(K;) and f~1(K>)
are conjugate if and only if Ky and K5 are so. Therefore, the inductive constructions
of Section 3.3 preserve the size of the set in the statement of the theorem.

Assume that T is either Z, * Z,, as above, or Zy * Zg * Zy and choose N as in
Lemma 6.2. Then there are at least K N*V non-isomorphic graphs H/ with two
dangling vertices.

Let us fix such a graph H,. Then consider the edge-link L. constructed in Sec-
tion 3.2.3, and glue H/ to L. via the dangling vertices in order to obtain £, +H, . The
graph L. + H. still has a unique root, which is the only condition for the arguments
of Section 3.2 to hold. Following those constructions once again, for a given finite
group I', results in a finite-index subgroup H, < T with Np(H,)/H, = T.

For any two choices of graphs H. and H! as above, the resulting subgroups H,
and H, are not conjugate. Indeed if H, and H, were conjugate, then Schy x(H,)
and Schy x (H,) would be isomorphic (with base-points not necessarily matched), so
that the roots of the former Schreier graph would be sent to the roots of the latter
one, and the instances of H/ would be mapped isomorphically to the instances of H.,
which would imply that ¢ and 7 coincide up to the above mentioned permutations.
Thus, there are > K N*V non-conjugate free subgroups H, of T with Np(H,)/H, =T
having same index.
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Finally, let us estimate the index of H. For any fixed I" with a given generating set
S, let er and vr be the following numbers:

er := the number of edge-links appearing in the original construction
of Section 3.2.3 = |T'| - |S]- (|S] — 1)/2;
vr = the number of vertices appearing in the original construction.

Now, with the modified construction involving H/, we obtain that the index of the
corresponding subgroup H, is

d=wvr +erN,
which is the number of vertices in the resulting Schreier graph. Thus, for such a d
and N sufficiently large, there are

d—vp

> K (d_vr)k er
er

conjugacy classes of index d subgroups H < T such that Np(H)/H =T

In order to conclude for an arbitrary d, as in the statement, just consider in-
dex |d]yptern subgroups. Then the above construction of H,’s yields the desired
result. O

7. SYMMETRIES OF MAPS, PAVINGS AND CONSTELLATIONS

As mentioned in Section 1, an oriented map M on n darts can be thought of as index
n free subgroup Hys of At = Zjy x Z. Moreover, the group of orientation-preserving
automorphisms of M is Aut M = N(Hp;)/Hp, where N(Hjpy) is the normaliser of
Hy in AT, cf. [3] and [13, Theorem 3.8].

An analogous statement holds for several other classes of combinatorial objects,
such as

oriented hypermaps, with A* =Z % Z [16, 17];

e oriented (p,q)-hypermaps, with AT =7Z,*Z, (p > 3, ¢ = 2) [5];
e oriented pavings (or three-dimensional maps), with A1 = Zy x Zs * Zs [4],
e length k£ > 3 constellations (in the sense of [15, Definition 1.1.1]), with AT =
VSRR ¥
k—1

The following theorem generalises the respective results of 7, 8, 11, 19] to the case
of (p, q)-hypermaps.

THEOREM 7.1. For any finite group T, and n sufficiently large, there exist ~ n™ non-
isomorphic oriented (p, q)-hypermaps H on n darts with Aut H 2T

Here by the symbol f(z) ~ z®, for a function f(z) : N — R, we mean its rate
of growth, i.e. that there exist positive constants A;, By, As, By such that A;251% <
f(z) < AgxB2® for x sufficiently large.

The family of (p, ¢)-hypermaps naturally comprises the cases of maps (p = 00, q =
2) and hypermaps (p = ¢ = o0). Some other interesting classes of maps, such as
triangulations (p = 3,¢ = 2) and quadranqulations (p = 4, ¢ = 2) of surfaces, or their
bi-coloured triangulations (p = ¢ = 3) also satisfy the above theorem.

As well, we can now easily estimate the number of three-dimensional pavings,
cf. [1, 4], with a given automorphism group.

THEOREM 7.2. For any finite group I, and n sufficiently large, there exist ~n™ non-
isomorphic oriented pavings P on n darts with Aut P = T.

An analogous result holds for constellations as defined in [15, Definition 1.1.1].
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THEOREM 7.3. For any finite group T, any k > 3, and n sufficiently large, there exist
~n" non-isomorphic length k constellations C' on n darts with Aut C = T.

Since each length k > 3 constellation defines a branched covering of the sphere
S? with k& branch points, we can reformulate the above theorem in a more geometric
language.

THEOREM 7.4. For any finite group T, any k > 3, and n sufficiently large, there exist
~ n" non-isomorphic degree n branched coverings of S? with k branch points and deck
transformation group T'.

All the above theorems are fairly obvious corollaries of the results in Section 6.
Indeed, the lower bound on the number of non-isomorphic hypermaps, resp. pavings,
on n darts with given automorphism group follows from Theorem 6.1, and the upper
bound of (n!)¥, with an appropriate fixed k > 2, is trivial. Then, invoking Stirling’s
formula provides the rate of growth ~ n™.

The statements of Theorems 7.1-7.4 should be contrasted with [9, Lemma 1], which
implies that the corresponding combinatorial objects “mostly” have only trivial au-
tomorphism groups, i.e. are asymmetric. However, those with a given non-trivial au-
tomorphism group are still numerous, though not as abundant as asymmetric ones.

Apparently, this technique can be applied to many naturally arising classes of
oriented maps, hypermaps, and pavings: exactly those describable as free subgroups
of a certain “universal group” A*, which is a finite free product of cyclic groups. For
any such class we obtain that any finite group is realisable as automorphism group by
infinitely many of its members (more precisely, super-exponentially many depending
on the number of darts). It is worth mentioning that not all families of maps admit
such a wide variety of symmetries, e.g. the maps with underlying graph a tree [10].
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