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Graph coverings and twisted operators

David Cimasoni & Adrien Kassel

Abstract Given a graph and a representation of its fundamental group, there is a naturally
associated twisted adjacency operator, uniquely defined up to conjugacy. The main result of
this article is the fact that this operator behaves in a controlled way under graph covering maps.
When such an operator can be used to enumerate objects, or compute a partition function, this
has concrete implications on the corresponding enumeration problem, or statistical mechanics
model. For example, we show that if Γ̃ is a finite covering graph of a connected graph Γ endowed
with edge-weights x = {xe}e, then the spanning tree partition function of Γ divides the one of Γ̃
in the ring Z[x]. Several other consequences are obtained, some known, others new.

1. Introduction

The aim of this article is to present a result of algebraic graph theory, probably known
to the experts, in a fairly self-contained and elementary manner. This brings into what
we believe to be the correct framework several well-known results in combinatorics,
statistical mechanics, and L-function theory, but also provides new ones. In order to
preserve its non-technical nature, we focus in the present article on relatively direct
consequences, leaving the more elaborate implications to subsequent papers, see in
particular [10].

We now explain our main result in an informal way, referring to Section 2 for precise
definitions and background, to Theorem 3.6 for the complete formal statement, and
to Section 3.2 for its proof.

Given a locally finite weighted graph Γ and a representation ρ of its fundamental
group, one can define a twisted adjacency operator Aρ

Γ, see Equation (1), which is well-
defined up to conjugacy. Consider a covering map Γ̃ → Γ of finite degree between two
connected locally finite graphs. Via this map, the fundamental group π1(Γ̃) embeds
into π1(Γ). As a consequence, any representation ρ of π1(Γ̃) defines an induced repre-
sentation ρ# of π1(Γ). Our main result is the fact that the operator Aρ

Γ̃
is conjugate

to Aρ#

Γ .
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Let us mention that the existence of a natural isomorphism between the vector
spaces on which the twisted adjacency operators act can be understood as a chain-
complex version of the so-called Eckmann-Shapiro lemma, originally stated in group
cohomology (see Remark 3.7). The interesting part of Theorem 3.6, which we have not
been able to find in the literature, is the fact that the explicitized natural isomorphism
conjugates the aptly defined twisted adjacency operators.

As an immediate consequence of this result, we see that the decomposition of ρ#

into irreducible representations leads to a direct sum decomposition of Aρ#

Γ , and there-
fore of Aρ

Γ̃
. For example, if ρ is taken to be the trivial representation, we readily obtain

the fact that AΓ is a direct summand of AΓ̃, see Corollary 3.8. (Here, the absence of
superscript means that these operators are not twisted, or twisted by the trivial rep-
resentation.) Furthermore, if the covering is normal, then AΓ̃ factors as a direct sum
of the operators Aρ

Γ twisted by the irreducible representations of the Galois group of
the covering, see Corollary 3.9.

Whenever Aρ
Γ can be used to enumerate combinatorial objects in Γ, or in an associ-

ated graph G, these statements have very concrete combinatorial implications. More
generally, if these operators can be used to compute some partition functions of the
weighted graph (Γ, x), or of an associated weighted graph (G, x), these results have
often non-trivial consequences on the corresponding models. Several of these impli-
cations are well-known, but others are new. We now state some of them, referring to
Section 4 for details.

There is an obvious place to start, namely the matrix-tree theorem: the Lapla-
cian ∆G allows to enumerate spanning trees (STs) and rooted spanning forests (RSFs)
in G. More generally, if G = (V,E) is endowed with edge-weights x = {xe}e∈E,
then a weighted version of ∆G allows to compute the corresponding partition func-
tions ZST(G, x) and ZRSF(G, x), which can be thought of as elements of the polynomial
ring Z[x] = Z[{xe}e∈E]. Applying Corollary 3.8 to the Laplacian AΓ = ∆G, we obtain
the following result: if G̃ is a finite covering graph of a finite connected graph G en-
dowed with edge-weights x, and if x̃ denotes these weights lifted to the edges of G̃,
then ZST(G, x) divides ZST(G̃, x̃) and ZRSF(G, x) divides ZRSF(G̃, x̃) in the ring Z[x].
As an immediate consequence, the number of spanning trees in G divides the number
of spanning trees in G̃ (a fact first proved by Berman [4] using a different method),
and similarly for rooted spanning forests (to the best of our knowledge, a new result).

Another interesting class of operators is given by the weighted skew-adjacency
matrices defined by Kasteleyn [21, 22] in his study of the dimer model on surface
graphs. For this model, Corollary 3.8 can only be applied to cyclic coverings, yielding
a known result [15, 26]. Applying Corollary 3.9 to the case of a graph embedded in
the torus yields an immediate proof of the classical fact that the dimer characteristic
polynomial behaves multiplicatively under so-called enlargement of the fundamental
domain [25, Theorem 3.3]. However, applying our results to the study of the dimer
model on graphs embedded in the Klein bottle leads to new powerful results, that are
harnessed in the parallel article [10].

Let us finally mention that our main result can be interpreted as the fact that the
operators Aρ

Γ satisfy the so-called Artin formalism, a set of axioms originating from
the study of L-series of Galois field extensions [2, 3]. As a consequence, we obtain
several results on the associated L-series L(Γ, x, ρ) = det(I −Aρ

Γ)−1, providing a wide
generalization of the results of Stark and Terras [34, 35], see Section 3.3.

We conclude this introduction with one final remark. There are two ways to consider
graphs: either as combinatorial objects, or as topological ones (namely 1-dimensional
CW-complexes). Hence, there are two corresponding ways to define and study the
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associated fundamental groups and covering maps. In our pursuit of simplicity, we
have chosen the combinatorial one. As a result, we provide the reader with a brief and
dry but self-contained treatment of the required parts of algebraic topology translated
from the topological to the combinatorial category, see Sections 2.1–2.3.

This paper is organised as follows. Section 2 deals with the necessary background
material and claims no originality: we start from scratch with graphs, their fundamen-
tal groups and covering maps, before moving on to connections on graphs, and basics
of representation theory of groups. Section 3 contains the definition of the twisted
operators, our main result with its proof and corollaries, together with the analogy
with algebraic number theory via the Artin formalism. Finally, Section 4 deals with
the aforementioned combinatorial applications.

2. Background on graphs and representations

In this section, we first recall the combinatorial definitions of the fundamental group
of a graph and of graph coverings, adapting the standard references [33] and [14] to
our purposes, see also [27]. We then proceed with connections on graph vector bundles
following [23], and linear representations of groups following [32].

2.1. Graphs and directed graphs. This first paragraph deals with the elemen-
tary concepts of graph and directed graph. Since there is no universal agreement
on the relevant terminology and notation, we record here these formal definitions
following [33].

Definition 2.1. A directed graph (or digraph) Γ consists of a set V of vertices, a
set D of (directed) edges, together with maps s, t : D → V assigning to each edge e ∈ D
its source vertex s(e) ∈ V and its target vertex t(e) ∈ V.

A graph Γ consists of sets V,D and maps s, t : D → V as above, together with
an involution of D assigning to each edge e ∈ D its inverse e ∈ D such that e ̸= e
and s(e) = t(e). We let E = D/(e ∼ e) denote the set of unoriented edges, and
write e ∈ E for the unoriented edge corresponding to e, e ∈ D.

A (directed) graph is locally finite if for all v ∈ V, the sets Dv = {e ∈ D | s(e) = v}
and Dv = {e ∈ D | t(e) = v} are finite. It is called finite if both sets V and D are finite.

Note that these graphs are not simple in general: we allow multiple edges as well
as self-loops, i.e. edges e with s(e) = t(e). Note also that in this formalism, graphs
are special types of directed graphs. Moreover, given a directed graph Γ, one can
build an associated graph (still denoted by Γ) by formally adding an inverse e to each
edge e ∈ D.

Let us fix a directed graph Γ. A path of length n ⩾ 1 is a sequence γ =
(e1, e2, . . . , en) of edges such that t(ei) = s(ei+1) for all i ∈ {1, . . . , n − 1}. We shall
write s(γ) = s(e1) and t(γ) = t(en) for the source and target of γ, respectively. A
path of length 0, or constant path γ, is given by a vertex, which is both the source
and target of γ. A loop (based at v) is a path γ with s(γ) = t(γ) = v.

The directed graph Γ is said to be connected if for any v, w ∈ V, there is a path γ
with s(γ) = v and t(γ) = w.

2.2. The fundamental group of a graph. Let us now assume that Γ is a graph,
and fix a vertex v ∈ V.

Note that the set of loops based at v is a monoid with respect to the concatenation
of paths, with neutral element 1 given by the constant path based at v. Let us call
two loops based at v (or more generally, two paths with same source and same target)
homotopic if one can be obtained from the other by removing or adding loops of the

Algebraic Combinatorics, Vol. 6 #1 (2023) 77



D. Cimasoni & A. Kassel

form (e, e) along the path. Then, the set of homotopy classes of loops based at v forms
a group, with the inverse of γ = (e1, . . . , en) given by γ = (en, . . . , e1).

Definition 2.2. This group is the fundamental group of the graph Γ based at v, and
is denoted by π1(Γ, v).

If Γ is connected, then the isomorphism class of π1(Γ, v) is easily seen not to depend
on the base vertex v.

By a slight abuse of terminology, we define the fundamental group of a directed
graph Γ as the fundamental group of the associated graph obtained by adding an
inverse to each edge of Γ.

We will make use of the alternative definition of the fundamental group, based on
a spanning tree. Recall that a circuit (of length n ⩾ 1) is a loop γ = (e1, . . . , en) such
that ei+1 ̸= ei for i ∈ {1, . . . , n−1}, e1 ̸= en, and such that the vertices t(e1), . . . , t(en)
are all distinct. A spanning tree of Γ is a connected non-empty subgraph T ⊂ Γ
without circuits, such that the vertices of T coincide with the vertices of Γ. Note that
the number of vertices and edges in a finite tree satisfy |V(T )| − |E(T )| = 1.

The fundamental group of the graph Γ based at T , denoted by π1(Γ, T ), is defined
as the quotient of the free group over D by the relations e = e−1 for all edges of Γ,
and e = 1 for all edges of T . If Γ is connected, then it admits a spanning tree, and
the groups π1(Γ, v) and π1(Γ, T ) are easily seen to be isomorphic for all v ∈ V and all
spanning trees T of Γ. As a consequence, if Γ is connected and finite, its fundamental
group is free of rank |E| − |V| + 1.

2.3. Covering graphs. A morphism of digraphs p from Γ̃ = (Ṽ, D̃, s̃, t̃) to Γ =
(V,D, s, t) consists of two maps p0 : Ṽ → V and p1 : D̃ → D such that s ◦ p1 = p0 ◦ s̃
and t ◦ p1 = p0 ◦ t̃. A morphism of graphs p : Γ̃ → Γ is a morphism of digraphs which
also satisfies the equality p1(e) = p1(e) for all e ∈ D̃.

As one easily checks, a morphism of graphs p : Γ̃ → Γ induces in the obvious way
a homomorphism of groups p∗ : π1(Γ̃, ṽ) → π1(Γ, p(ṽ)) .

Definition 2.3. A covering map is a morphism of directed graphs p : Γ̃ → Γ
with p0 : Ṽ → V surjective, such that for all ṽ ∈ Ṽ, the restriction of p1 defines
bijections D̃ṽ → Dp(ṽ) and D̃ṽ → Dp(ṽ). In that case, Γ̃ is called a covering digraph
of Γ.

If Γ is a connected digraph and p is a covering map, then the fibers p−1
0 (v)

and p−1
1 (e) have the same cardinality for all v ∈ V and e ∈ D. This is called the

degree of the covering. From now on, we will drop the subscripts in p0 and p1 and
denote both maps by p.

Note that any morphism of digraphs p : Γ̃ → Γ extends to a unique morphism
between the associated graphs (obtained by adding an inverse to each edge). Moreover,
if the morphism of digraphs is a covering map, then so is the associated morphism of
graphs. In such a case, the graph Γ̃ is called a covering graph of Γ.

The following path lifting property is a direct consequence of the definitions, but
nevertheless a fundamental feature of a covering map p : Γ̃ → Γ. Given any path γ

in Γ with s(γ) = v0 and any ṽ0 ∈ p−1(v0), there is a unique path γ̃ in Γ̃ with p(γ̃) = γ
and s(γ̃) = ṽ0. Furthermore, for γ a loop, the formula [γ] · ṽ0 = t(γ̃) defines an
action of π1(Γ, v0) on p−1(v0). If Γ̃ is connected, then this action is easily seen to
be transitive, with isotropy group of ṽ0 equal to p∗(π1(Γ̃, ṽ0)). As a consequence, the
degree of the covering coincides with the index of p∗(π1(Γ̃, ṽ0)) in π1(Γ, v0).

The easy proof of the following lemma is left to the reader.
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Lemma 2.4. If p : Γ̃ → Γ is a covering map, then:
(i) the homomorphism p∗ : π1(Γ̃, ṽ) → π1(Γ, p(ṽ)) is injective;
(ii) for any e ∈ D, we have the equalities

{t̃(ẽ) ∈ Ṽ | ẽ ∈ p−1(e)} = p−1(t(e)) and {s̃(ẽ) ∈ Ṽ | ẽ ∈ p−1(e)} = p−1(s(e)) .

Let us finally recall that a covering map p : Γ̃ → Γ is said to be normal (or regular)
if p∗(π1(Γ̃, v)) is a normal subgroup of π1(Γ, p(v)). In such a case, we denote the
quotient group by G(Γ̃/Γ). This is nothing but the group of covering transformations
of this covering map, usually referred to as the Galois group.

2.4. Connections on graphs. Following [23, Section 3.1], let us fix a vector bundle
on a graph Γ, i.e. a finite-dimensional complex vector space W and the choice of
a vector space Wv isomorphic to W for each v ∈ V. Such a vector bundle can be
identified with WΓ :=

⊕
v∈V Wv ≃ WV.

Definition 2.5. A connection on a vector bundle WΓ is the choice Φ = (φe)e∈D of
an isomorphism φe : Wt(e) → Ws(e) for each e ∈ D, such that φe = φ−1

e for all e ∈ D.
Two connections Φ = (φe)e∈D and Φ′ = (φ′

e)e∈D are said to be gauge-equivalent if
there is a family of automorphisms {ψv : Wv → Wv}v∈V such that ψs(e)◦φe = φ′

e◦ψt(e)
for all e ∈ D.

Let us fix a base vertex v0 ∈ V, a connection Φ on a vector bundle WΓ, and
let us denote Wv0 simply by W . Any loop γ = (e1, . . . , en) based at v0 gives an
automorphism φe1 ◦ · · · ◦ φen of W called the monodromy of γ. This construction
defines a homomorphism

ρΦ : π1(Γ, v0) −→ GL(W ) ,
i.e. a representation of the fundamental group of Γ in W .

Any representation ρ : π1(Γ, v0) → GL(W ) is of the form ρΦ for some connection Φ:
indeed, one can fix a spanning tree T ⊂ Γ (recall that π1(Γ, v0) ≃ π1(Γ, T )), set φe =
idW for each edge of T and φe = ρe for each of the remaining edges of Γ. Furthermore,
given two connections Φ and Φ′ on WΓ, one easily checks that ρΦ and ρΦ′ are conjugate
representations if and only if Φ and Φ′ are gauge-equivalent connections.

In other words, the GL(W )-character variety of π1(Γ, v0), i.e. the set of conjugacy
classes of homomorphisms π1(Γ, v0) → GL(W ), is given by the set of connections
on WΓ up to gauge-equivalence.

Remark 2.6. The definition of a connection as a family of isomorphisms φe : Ws(e) →
Wt(e) seems more natural, but leads to antihomomorphisms of π1(Γ, v0). On the other
hand, our convention yields homomorphisms, and is coherent with the definition of a
local coefficient system for twisted homology, see e.g. [37, p. 255].

2.5. Linear representations of groups. We now recall the necessary notation
and terminology of linear representations of groups, following [32]. Throughout this
subsection, G denotes a group.

Let us first recall that the degree of a representation ρ : G → GL(W ), denoted
by deg(ρ), is defined as the dimension of W , which we always assume to be finite.
The only representation of degree 0 is written ρ = 0, while the degree 1 representation
sending all elements of G to 1 ∈ C∗ = GL(C) is denoted by ρ = 1.

Let us now fix two linear representations ρ : G → GL(W ) and ρ′ : G → GL(W ′).
The direct sum of ρ and ρ′ is the representation ρ ⊕ ρ′ : G → GL(W ⊕ W ′) given
by (ρ⊕ ρ′)g = ρg ⊕ ρg′ . A representation of G is said to be irreducible if it is not the
direct sum of two representations that are both not 0.
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Now, fix a subgroup H < G of finite index, and a representation ρ : H → GL(W ).
There is a representation ρ# : G → GL(Z) which is uniquely determined up to iso-
morphism by the following two properties. Let R ⊂ G denote a set of representatives
of G/H, i.e. each g ∈ G can be written uniquely as g = rh ∈ G with r ∈ R and h ∈ H.

(i) We have Z =
⊕

r∈R ρ
#
r (W ); in particular, the space W is a subspace of Z.

(ii) For any h ∈ H and w ∈ W , we have ρ#
h (w) = ρh(w).

Indeed, the first property ensures that any element of Z can be written uniquely
as

∑
r∈R ρ

#
r (wr) with wr ∈ W , while the second one implies that for any g ∈ G, r ∈ R

and w ∈ W , we have ρ#
g (ρ#

r (w)) = ρ#
r′(ρh(w)) where gr = r′h ∈ G with r′ ∈ R

and h ∈ H.
This representation ρ# : G → GL(Z) is said to be induced by ρ : H → GL(W ).

Example 2.7. Let us fix a finite index subgroup H < G and consider the trivial
representation ρ = 1 of H. By definition, the induced representation ρ# : G → GL(Z)
is given by the action by left multiplication of G on the vector space Z with basis G/H.
Since G acts by permutation on the set G/H, which is finite, the subspace of Z
generated by the sum of these basis elements is fixed by this action. Therefore, the
induced representation splits as ρ# = 1 ⊕ ρ′ for some representation ρ′ of G.

Let us assume further that H is a normal subgroup of G. In such a case, the induced
representation can be written as ρ# = ρreg ◦ pr, with pr : G → G/H the canonical
projection and ρreg the so-called regular representation of G/H. Since this group is
finite, this representation splits as

ρreg =
⊕

ρ irred.
ρ⊕ deg(ρ) ,

the sum being over all irreducible representations of G (see [32, Section 2.4]).

3. Twisted operators on graph coverings

This section contains the proof of our main result, Theorem 3.6, which relates twisted
adjacency operators on directed graphs connected by a covering map. We start in
Section 3.1 by defining the relevant twisted operators, while Section 3.2 deals with
Theorem 3.6, its proof, and a couple of corollaries. Finally, Section 3.3 shows how this
result can be interpreted as a combinatorial version of the Artin formalism for these
operators, yielding consequences on associated L-series.

3.1. Twisted weighted adjacency operators. Fix a locally finite directed
graph Γ = (V,D, s, t). Let us assume that it is endowed with edge-weights, i.e. a
collection x = {xe}e∈D of complex numbers attached to the edges. The associated
weighted adjacency operator AΓ acts on CV via

(AΓf)(v) =
∑

e∈Dv

xe f(t(e)) for all f ∈ CV and v ∈ V .

Adapting [23, Section 3.2] to our purposes, this operator can be twisted by a
representation ρ : π1(Γ, v0) → GL(W ) in the following way. Fix a vector bundle WΓ ≃
WV and a connection Φ = (φe)e∈D representing ρ.

Definition 3.1. The associated twisted weighted adjacency operator Aρ
Γ is the oper-

ator on WV given by

(1) (Aρ
Γf)(v) =

∑
e∈Dv

xe φe(f(t(e))) for all f ∈ WV and v ∈ V .

Several remarks are in order.
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Remark 3.2. (i) We make a slight abuse of notation in the sense that the oper-
ator Aρ

Γ depends on the choice of a connection Φ and is therefore not entirely
determined by ρ. However, by Section 2.4, conjugate representations are given
by gauge equivalent connections. Furthermore, the corresponding twisted op-
erators are conjugated by an element of GL(W )V ⊂ GL(WV). Therefore, the
conjugacy class of Aρ

Γ only depends on the conjugacy class of ρ.
(ii) If a representation ρ is given by the direct sum of ρ1 and ρ2, then the opera-

tor Aρ
Γ is conjugate to Aρ1

Γ ⊕ Aρ2
Γ .

(iii) The operator A1
Γ is nothing but the untwisted operator AΓ.

Obviously, any given directed graph Γ defines a single untwisted operator AΓ, so
it might seem at first sight that the applications of our results will be rather limited.
However, there are many natural assignments G 7→ Γ mapping a directed graph G
to another directed graph Γ so that AΓ provides a new operator on G. Moreover, if
there is a natural homomorphism α : π1(Γ) → π1(G), then a ρ-twisted version of this
new operator can be understood as Aρ◦α

Γ . Finally, if the assignment G 7→ Γ preserves
covering maps, then our results apply to these new twisted operators as well.

We now give three explicit examples of such natural maps G 7→ Γ, claiming no
exhaustivity. It is easy indeed to find additional interesting ones, e.g. the Fisher
correspondence used in the study of the Ising model [12].

Example 3.3. Let G = (V(G),E(G)) be a graph endowed with symmetric edge-
weights, i.e. labels x = (xe)e∈E(G) associated to its unoriented edges. Consider the
associated graph Γ = (V,E) defined by V = V(G) and E = E(G) ∪ V(G), where
each v ∈ V(G) produces an unoriented edge {v, v} and the source, target, and in-
volution maps of Γ are given by extending the ones of G via s(v) = t(v) = v for
all v ∈ V. (Concretely, the graph Γ is obtained from G by adding a self-loop at
each vertex.) Also, extend the edge-weights on G to symmetric edge-weights on Γ
via xv = −

∑
e∈D(G)v

xe. Then, the corresponding weighted adjacency operator AΓ is
(the opposite of) the Laplacian ∆G on G. It can be used to count spanning trees of G
— this is the celebrated matrix-tree theorem — but also rooted spanning forests, see
Section 4.1.

Note that there is a natural homomorphism α : π1(Γ, v0) → π1(G, v0) mapping all
the newly introduced self-loops to the neutral element. Given any representation ρ
of π1(G, v0), the associated twisted operator Aρ◦α

Γ is the vector bundle Laplacian ∆ρ
G

of [23]. When the representation ρ takes values in C∗ or SL2(C), then ∆ρ
G can be used

to study cycle-rooted spanning forests [13, 23], while representations of higher degree
yield more involved combinatorial objects.

Example 3.4. Let Γ be a graph endowed with symmetric edge-weights x = (xe)e∈E.
Fix an orientation of the edges of Γ and consider the same graph Γ endowed with the
anti-symmetric edge-weights x = {xe}e∈D given by xe = xe if the orientation of e ∈ D
agrees with the fixed orientation, and xe = −xe otherwise. Then, the operator AΓ is
a weighted skew-adjacency operator that was used by Kasteleyn [21, 22] and many
others in the study of the 2-dimensional dimer and Ising models, see Section 4.2.
Such operators twisted by SL2(C)-representations are also considered by Kenyon in
his study of the double-dimer model [24].

Example 3.5. Let us start with a graph G = (V(G),D(G), sG, tG, i) endowed with
symmetric edge-weights x = {xe}e, and consider the associated directed line graph Γ =
(V,D, s, t) defined by

V = D(G), D = {(e, e′) ∈ V × V | tG(e) = sG(e′) but e′ ̸= e}, s(e, e′) = e, t(e, e′) = e′,
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and endowed with the edge-weights x = {xe,e′}(e,e′)∈D defined by xe,e′ = xe. Then, the
operator I −AΓ is considered by Stark and Terras [34, 35] in their study of prime cycles
(see Section 3.3), while a similar operator is defined by Kac and Ward [17] in their
exploration of the planar Ising model (see Section 4.2). Note also that there is a natural
homomorphism α : π1(Γ, e0) → π1(G, s(e0)), so any representation ρ : π1(G, v0) →
GL(W ) defines a twisted operator I −Aρ◦α

Γ .

3.2. The main result. We are finally ready to state and prove our main theorem.
Let Γ = (V,D, s, t) be a locally finite connected directed graph with weights x =

(xe)e∈D, and let p : Γ̃ → Γ be a covering map of finite degree d, with Γ̃ = (Ṽ, D̃, s̃, t̃)
connected. The weights x on Γ lift to weights x̃ on Γ̃ via x̃ẽ := xp(ẽ) for all ẽ ∈ D̃,
so Γ̃ is a weighted directed graph, which is locally finite.

Fix base vertices v0 ∈ V and ṽ0 ∈ p−1(v0), and recall from Lemma 2.4 that p
induces an injection p∗ : π1(Γ̃, ṽ0) → π1(Γ, v0) between the fundamental groups of the
associated graphs, so π1(Γ̃, ṽ0) can be considered as a subgroup of π1(Γ, v0) of index d.
Therefore, as explained in Section 2.5, any representation ρ : π1(Γ̃, ṽ0) → GL(W )
induces a representation ρ# : π1(Γ, v0) → GL(Z).

Theorem 3.6. For any covering map of connected directed graphs p : Γ̃ → Γ as above
and any representation ρ of π1(Γ̃, ṽ0), the operators Aρ

Γ̃
and Aρ#

Γ are conjugate.

Remark 3.7. The existence of a natural isomorphism W Ṽ ≃ ZV is a chain-complex
version of the Eckmann-Shapiro Lemma, traditionally stated in the context of group
(co)homology (see e.g. [6, p. 73]). Moreover, the tensor-product definition of the in-
duced representation (see [32, Chapter 7]) makes the existence of this isomorphism
a routine check. The interesting part of Theorem 3.6 is the explicit form of this nat-
ural isomorphism in our setting, which turns out to conjugate the relevant twisted
adjacency operators.

Before giving the proof of Theorem 3.6, we present a couple of consequences.

Corollary 3.8. If Γ̃ is a connected covering digraph of Γ of finite degree, then AΓ̃ is
conjugate to AΓ ⊕ Aρ′

Γ for some representation ρ′ of π1(Γ, v0).

Proof. Applying Theorem 3.6 to the trivial representation ρ = 1 of π1(Γ̃, ṽ0), we get
that Aρ

Γ̃
= AΓ̃ is conjugate to Aρ#

Γ , with ρ# the induced representation of π1(Γ, v0).
By the first part of Example 2.7, it splits as ρ# = 1 ⊕ ρ′ for some representation ρ′

of π1(Γ, v0). The statement now follows from the second and third points of Re-
mark 3.2. □

Corollary 3.9. If Γ̃ → Γ is a normal covering map of finite degree with Γ̃ connected,
then AΓ̃ is conjugate to ⊕

ρ irred.

(
Aρ◦pr

Γ
)⊕ deg(ρ)

,

where the direct sum is over all irreducible representations of G(Γ̃/Γ), and pr stands
for the canonical projection of π1(Γ, v0) onto π1(Γ, v0)/p∗(π1(Γ̃, ṽ0)) = G(Γ̃/Γ).

Proof. This is a direct consequence of Theorem 3.6 applied to the trivial represen-
tation ρ = 1 of π1(Γ̃, ṽ0) together with Example 2.7 and the second point of Re-
mark 3.2. □
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Proof of Theorem 3.6. Let p : Γ̃ → Γ be a covering map sending the base vertex ṽ0
of Γ̃ to the base vertex v0 of Γ, with Γ = (V,D, s, t) a locally finite and connected
directed graph endowed with edge-weights x = (xe)e∈D, and Γ̃ = (Ṽ, D̃, s̃, t̃) a (locally
finite) connected directed graph endowed with the lifted edge-weights x̃ = (x̃ẽ)

ẽ∈D̃
defined by x̃ẽ = xp(ẽ). As always, we use the same notation Γ̃,Γ for the directed
graphs and for the associated graphs.

Let ρ : π1(Γ̃, ṽ0) → GL(W ) be a representation, and let Φ̃ = (φ̃ẽ)
ẽ∈D̃ be an arbitrary

connection on a vector bundle WΓ̃ =
⊕

ṽ∈Ṽ Wṽ such that ρΦ̃ = ρ (recall Section 2.4).
Consider the vector bundle on Γ given by ZΓ =

⊕
v∈V Zv, where

Zv :=
⊕

ṽ∈p−1(v)
Wṽ .

This definition leads to the equality ZΓ =
⊕

v∈V
⊕

ṽ∈p−1(v) Wṽ =
⊕

ṽ∈Ṽ Wṽ = WΓ̃.
Next, consider the connection Φ = (φe)e∈D defined by

φe :=
⊕

ẽ∈p−1(e)
φ̃ẽ :

⊕
ẽ∈p−1(e)

Wt̃(ẽ) −→
⊕

ẽ∈p−1(e)
Ws̃(ẽ) .

Note that the second point of Lemma 2.4 gives
⊕

ẽ∈p−1(e) Wt̃(ẽ) =
⊕

ṽ∈p−1(t(e)) Wṽ =
Zt(e) and similarly for Zs(e). Therefore, the formula displayed above defines a
map φe : Zt(e) → Zs(e), and Φ is a connection on the vector bundle ZΓ.

Let us denote by AΦ
Γ the operator AΓ twisted by the connection Φ, and similarly

for AΦ̃
Γ̃

. For any f ∈ ZΓ = WΓ̃ and e ∈ Dv, one can write

f(t(e)) =
⊕

ṽ∈p−1(t(e))
f(ṽ) =

⊕
ẽ∈p−1(e)

f(t̃(ẽ))

by Lemma 2.4. For any v ∈ V, this leads to

(AΦ
Γf)(v) =

∑
e∈Dv

xe φe(f(t(e)))

=
∑

e∈Dv

xe

⊕
ẽ∈p−1(e)

φ̃ẽ(f(t̃(ẽ))) =
∑

e∈Dv

⊕
ẽ∈p−1(e)

x̃ẽ φ̃ẽ(f(t̃(ẽ))) .

Since p is a morphism of graphs, this sum is equal to⊕
ṽ∈p−1(v)

∑
ẽ∈D̃ṽ

x̃ẽ φ̃ẽ(f(t̃(ẽ))) =
⊕

ṽ∈p−1(v)
(AΦ̃

Γ̃
f)(ṽ) = (AΦ̃

Γ̃
f)(v) ∈

⊕
ṽ∈p−1(v)

Wṽ = Zv .

In conclusion, the explicit operator AΦ̃
Γ̃

representing Aρ

Γ̃
coincides with AΦ

Γ . Therefore,
we are left with the proof that the connection Φ on ZΓ is such that ρΦ = ρ#.

To do so, let us check that ρΦ satisfies the two defining properties of the repre-
sentation ρ# : π1(Γ, v0) → GL(Z) induced by ρ : π1(Γ̃, ṽ0) → GL(W ), as stated in
Section 2.5. Consider a loop γ in Γ based at v0. For any ṽ ∈ p−1(v0), the automor-
phism ρΦ

[γ] maps the elements of Wṽ ⊂ Zv0 = Z to the component of Z corresponding
to the endpoint of the lift of γ starting at ṽ. In other words, and with the nota-
tion of Section 2.3, we have the equality ρΦ

[γ](Wṽ) = W[γ]·ṽ. Since Γ̃ is connected,
the action of π1(Γ, v0) on p−1(v0) is transitive, with the isotropy group of ṽ0 equal
to p∗(π1(Γ̃, ṽ0)). Therefore, we see that the space Z =

⊕
ṽ∈p−1(v0) Wṽ is indeed the di-

rect sum of the images of Wṽ0 by any set of representatives of π1(Γ, v0)/p∗(π1(Γ̃, ṽ0)).
Finally, for any loop γ̃ in Γ̃ based at ṽ0 and any vector w ∈ Wṽ0 , we have ρΦ

p∗([̃γ])
(w) =
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ρΦ̃
[̃γ]

(w) = ρ[̃γ](w) by definition, thus showing the second point. This concludes the
proof. □

3.3. The Artin formalism for graphs. In his foundational work in algebraic
number theory [2, 3], Artin associates an L-series to any Galois field extension endowed
with a representation of its Galois group. He shows that these L-series satisfy four
axioms, the so-called Artin formalism (see [29, Chapter XII.2] for a modern account).
Since then, analogous axioms have been shown to hold for L-series in topology [28],
in analysis [16], and for some L-series associated to finite graphs [35].

The aim of this subsection is to explain how Theorem 3.6 can be interpreted as (the
non-trivial part of) an Artin formalism for graphs. We also show that our approach
allows for wide generalisations of the results of Stark and Terras [34, 35].

In what follows, for simplicity, we omit the basepoint when we write fundamental
groups. Recall from Section 3.1 that to any weighted locally finite directed graph Γ =
(V,D, s, t) endowed with a representation ρ : π1(Γ) → GL(W ), we associate a twisted
weighted adjacency operator Aρ

Γ in End(WV), well defined up to conjugation. Recall
also that a covering p : Γ̃ → Γ is said to be normal if π1(Γ̃) is a normal subgroup
of π1(Γ). In this case, the quotient group G = π1(Γ)/π1(Γ̃) is called the Galois group
of the covering. Given a normal covering p : Γ̃ → Γ (also simply written as Γ̃/Γ) and
a representation ρ : G → GL(W ) of its Galois group, one can form the representa-
tion ρ ◦ pr: π1(Γ) → G → GL(W ) of π1(Γ). We denote by O(Γ̃/Γ, ρ) =

[
Aρ◦pr

Γ
]

∈
End(WV)/GL(W )V the conjugacy class of the associated twisted adjacency operator.

Proposition 3.10. The map which to a normal covering Γ̃/Γ and a representation ρ

of its Galois group associates the class of operators O(Γ̃/Γ, ρ) satisfies the following
four axioms.

1. O(Γ̃/Γ, 1) = [AΓ], the untwisted adjacency operator on Γ.
2. Given any two representations ρ1 and ρ2 of G, we have

O(Γ̃/Γ, ρ1 ⊕ ρ2) = O(Γ̃/Γ, ρ1) ⊕ O(Γ̃/Γ, ρ2) .

3. If H is a normal subgroup of G and Γ = H\Γ̃ denotes the corresponding
covering of Γ, then for any representation ρ of G/H, we have

O(Γ/Γ, ρ) = O(Γ̃/Γ, ρ ◦ π) ,

where π : G → G/H denotes the canonical projection.
4. If H is a subgroup of G and Γ = H\Γ̃, then for any representation ρ of H,

we have
O(Γ̃/Γ, ρ) = O(Γ̃/Γ, ρ#) ,

where ρ# is the representation of G induced by ρ.

Proof. The first and second points are reformulations of the trivial Remarks 3.2 (ii)
and (iii), while the third point follows from the fact that the composition π ◦
pr: π1(Γ) → G/H coincides with the canonical projection of π1(Γ) onto π1(Γ)/π1(Γ).
As for the last point, let p : Γ → Γ denote the relevant covering map, and pr the
canonical projection of π1(Γ) onto π1(Γ)/π1(Γ̃) = H. By naturality, the composition
of pr with the inclusion of H in G coincides with pr◦p∗. Therefore, the representation
induced by ρ◦pr coincides with ρ# ◦pr. The fourth point is now a formal consequence
of Theorem 3.6:

O(Γ̃/Γ, ρ) = [Aρ◦pr
Γ

] = [A(ρ◦pr)#

Γ ] = [Aρ#◦pr
Γ ] = O(Γ̃/Γ, ρ#) . □
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With the L-series of [35] in mind, it is natural to consider det(I −Aρ◦pr
Γ )−1 as the

object of study. The fact that these L-series satisfy the Artin formalism follows from
the proposition above.

Actually, our method easily yields results on more general L-series, as follows. Let
us fix a map associating to a weighted graph (G, x) a weighted directed graph (Γ, x),
as in Examples 3.3–3.5. Formally, we want this assignment to preserve the ingredients
of Theorem 3.6: a covering map G̃ → G of locally finite connected graphs is sent to a
covering map Γ̃ → Γ of locally finite connected digraphs, and there is a natural group
homomorphism α : π1(Γ) → π1(G). Given any representation ρ of π1(G), we can now
consider the L-series

L(G, x, ρ) = det(I −Aρ◦α
Γ )−1 ∈ C[[x]] .

By the Amitsur formula (see [1, 31]), it can be written as

L(G, x, ρ) =
∏
[γ]

det(1 − x(γ)ργ)−1 ,

where the product is over all loops γ in Γ that cannot be expressed as δℓ for some
path δ and integer ℓ > 1, loops considered up to change of base vertex. Also, x(γ)
denotes the product of the weights of the edges of γ, while ργ is the monodromy
of the loop γ. (Note that changing the base point yields a conjugate monodromy,
so det(1 − x(γ)ργ) is well defined.) Of course, these loops in Γ correspond to some
class of loops in G, a class which depends on the way Γ is obtained from G. But for
any such assignment, the results of Section 3.2 have straightforward implications on
the corresponding L-series, and on the corresponding class of loops in G.

For concreteness, let us focus on the directed line graph assignment G 7→ Γ de-
scribed in Example 3.5. The corresponding twisted weighted operator I −Aρ◦α

Γ co-
incides with the operator considered in [35, Theorem 7], where the authors restrict
themselves to representations of a finite quotient of π1(G), i.e. representations of the
Galois group of a finite cover of G. In the expression displayed above, the product is
over so-called prime cycles in G, i.e. equivalence classes of cyclic loops in G that do
not contain a subpath of the form (e, e) and that cannot be expressed as the power of
a shorter loop. In the special case when ρ factorises through a finite quotient of π1(G),
this is what Stark and Terras define as the multiedge Artin L-function of G, an object
extending several other functions introduced in [34, 35].

The theory of Section 3 applied to Aρ◦α
Γ now allows us to easily extend their re-

sults to this more general L-function. For example, our Corollary 3.8 shows that if G̃
is a finite connected covering graph of a connected graph G, then L(G, x, 1)−1 di-
vides L(G̃, x̃, 1)−1, extending Corollary 1 of [34, Theorem 3]. Also, our Corollary 3.9
recovers the corollary of [35, Proposition 3], while our Theorem 3.6 extends Theo-
rem 8 of [35]. Finally, expanding the equality logL(G̃, x̃, ρ) = logL(G, x, ρ#) yields an
extension of the technical Lemma 7 of [35] to more general covers and representations.

We conclude this section by recalling that our approach immediately yields similar
results for any assignment G 7→ Γ preserving covering maps.

4. Combinatorial applications

Each time the determinant of an operator counts combinatorial objects, Theorem 3.6
and Corollaries 3.8 and 3.9 have combinatorial implications. This is the case for the
operators given in Examples 3.3 and 3.4, whose determinants count spanning trees
and perfect matchings, respectively. We explain these applications in Sections 4.1
and 4.2. We also briefly enumerate additional applications in Section 4.3.
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4.1. Spanning trees and rooted spanning forests. Our first combinatorial ap-
plication relies on a slightly generalised version of the matrix-tree theorem, that we
now recall.

Let G = (V,E) be a finite graph endowed with symmetric weights x = {xe}e∈E, that
we consider as formal variables. Let ∆G be the associated Laplacian, acting on CV via

∆Gf(v) =
∑

e∈Dv

xe(f(v) − f(t(e)))

for f ∈ CV and v ∈ V. Set n := |V|, and consider the characteristic polynomial
in |E| + 1 variables

PG(λ) := det(λ I −∆G) =
n∑

i=0
ci λ

i ∈ Z[x, λ] .

Then, the coefficient ci ∈ Z[x] admits the combinatorial interpretation

(−1)n−i ci =
∑

F ⊂G, |π0(F )|=i

ϕ(F )
∏

e∈E(F )

xe ,

where the sum is over all spanning forests F in G with i connected components
(or equivalently, with n − i edges), and ϕ(F ) ∈ Z+ denotes the number of possible
roots of F : if F =

⊔
j Tj denotes the decomposition of F into connected components,

then ϕ(F ) =
∏

j |V(Tj)|.
For example, there is a unique spanning forest F in G with n connected components

(given by the vertices of G), it admits a unique root, leading to the expected value
cn = 1. As additional reality checks, we have the values −cn−1 = 2

∑
e∈E xe and

c0 = det(∆G) = 0. Finally, since connected spanning forests coincide with spanning
trees, and all spanning trees admit exactly n roots, we have

(−1)n−1 c1 = n
∑
T ⊂G

∏
e∈E(T )

xe ,

the sum being over all spanning trees of G. This latter result is nothing but Kirchoff’s
matrix-tree theorem.

Remark 4.1. This result can be derived from the (usual version of the) matrix-tree
theorem applied to the graph obtained from G by adding one vertex connected to
each vertex of G by an edge of weight −λ.

Let us also mention that this result was obtained by Chung and Langlands in the
context of graphs endowed with vertex-weights rather than edge-weights [8]. The-
orem 3.6 trivially extends to graphs endowed with vertex-weights (in addition to
edge-weights), and it is a routine task to adapt the results of the present subsection
to this more general case.

Definition 4.2. The spanning tree partition function of a weighted graph (G, x) is

ZST(G, x) :=
∑
T ⊂G

∏
e∈E(T )

xe ,

the sum being over all spanning trees in G. Similarly, the rooted spanning forest
partition function of (G, x) is

ZRSF(G, x) :=
∑
F ⊂G

ϕ(F )
∏

e∈E(F )

xe ,

the sum being over all spanning forests in Γ.
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Note that if one sets all the weights to 1, then ZST(G, 1) is the number of spanning
trees in G, while ZRSF(G, 1) counts the number of rooted spanning forests in G.

Theorem 4.3. Let G̃ be a finite covering graph of a finite connected graph G endowed
with edge-weights x = {xe}e∈E, and let x̃ denote these weights lifted to the edges of G̃.
Then ZST(G, x) divides ZST(G̃, x̃) and ZRSF(G, x) divides ZRSF(G̃, x̃) in the ring Z[x].

This immediately leads to the following corollary. The first point is known since
the work of Berman (see [4, Theorem 5.7]), while the second one appears to be new.

Corollary 4.4. Let G̃ be a finite covering graph of a finite connected graph G.

(i) The number of spanning trees in G divides the number of spanning trees in G̃.
(ii) The number of rooted spanning forests in G divides the number of rooted span-

ning forests in G̃. □

Proof of Theorem 4.3. First note that ZRSF(G̃, x̃) is multiplicative with respect to
connected sums while ZST(G̃, x̃) vanishes for G̃ not connected. Therefore, it can be
assumed that G̃ is connected. Let G̃ → G be a covering map between two finite
connected graphs, with edge-weights x on G inducing lifted edge-weights x̃ on G̃.
Let Γ̃ (resp. Γ) be the graph associated with G̃ (resp. G) as in Example 3.3. Note
that the graphs Γ̃ and Γ remain finite and connected, and the covering map G̃ → G
trivially extends to a covering map Γ̃ → Γ. By Example 3.3 and Corollary 3.8, we
know that ∆G̃ = AΓ̃ is conjugate to AΓ ⊕ Aρ

Γ = ∆G ⊕ ∆ρ
G for some representation ρ

of π1(Γ, v0). Therefore, setting P ρ
G(λ) := det(λ I −∆ρ

G) ∈ C[x, λ], we have the equality

PG̃(λ) = PG(λ) · P ρ
G(λ) ∈ C[x, λ] .

Observe that PG̃(λ) and PG(λ) belong to Z[x, λ], so P ρ
G(λ) belongs to the intersec-

tion of C[x, λ] with the field of fractions Q(Z[x, λ]) = Q(x, λ), i.e. it belongs to the
ring Q[x, λ]. Since the leading λ-coefficient of PG(λ) is equal to 1, the greatest com-
mon divisor of its coefficients is 1. An application of Gauss’s lemma (see e.g. [30,
Chapter IV.2, Corollary 2.2]) now implies that P ρ

G(λ) belongs to Z[x, λ]. In conclu-
sion, PG(λ) divides PG̃(λ) in Z[x, λ].

By the extended matrix-tree theorem stated above, we have PG(−1) = ±ZRSF(G, x)
divides PG̃(−1) = ±ZRSF(G̃, x̃) in Z[x], proving the second claim.

To show the first one, consider again the equation PG̃(λ) = PG(λ) ·P ρ
G(λ) in Z[x, λ],

and observe that PG̃(λ) and PG(λ) are both multiples of λ. Dividing both sides by λ
and setting λ = 0, the matrix-tree theorem (in the form stated above) implies

|V(G̃)| · ZST(G̃, x̃) = ±|V(G)| · ZST(G, x) · P ρ
G(0) ,

i.e. ZST(G̃, x̃) = ZST(G, x) · g(x), with g(x) = ±1
deg(G̃/G)

P ρ
G(0) ∈ Q[x]. Since

both ZST(G̃, x̃) and ZST(G, x) belong to Z[x] and the greatest common divisor
of the coefficients of ZST(G, x) is 1, one more application of Gauss’s lemma yields
that g(x) lies in Z[x], and concludes the proof. □

4.2. Perfect matchings. In this subsection, we review some applications of The-
orem 3.6 to perfect matchings, and more generally to the dimer model.

Recall that a perfect matching (or dimer configuration) in a graph Γ is a family of
edges M ⊂ E such that each vertex of Γ is adjacent to a unique element of M . If Γ
is finite and endowed with symmetric edge-weights x = {xe}e∈E, then one defines the
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dimer partition function of Γ as

Zdimer(Γ, x) =
∑
M

∏
e∈M

xe ,

the sum being over all perfect matchings in Γ. Note that if all the weights are equal
to 1, then Zdimer(Γ, 1) simply counts the number of perfect matchings in Γ.

Now, assume that Γ is embedded in the plane, and endowed with an orientation
of its edges so that around each face of Γ ⊂ R2, there is an odd number of edges
oriented clockwise. Let x = {xe}e∈D be the anti-symmetric edge-weights obtained as
in Example 3.4, and let AΓ be the associated weighted skew-adjacency operator. By
Kasteleyn’s celebrated theorem [21, 22], the Pfaffian of AΓ is equal to ±Zdimer(Γ, x).

With this powerful method in hand, we can try to use Theorem 3.6 in studying
the dimer model on symmetric graphs. Quite unsurprisingly, the straightforward ap-
plications of our theory are not new. Indeed, the only divisibility statement that we
obtain via Corollary 3.8 is the following known result (see Theorem 3 of [15] for the
bipartite case, and Section IV.C of [26] for a general discussion).

Proposition 4.5. Fix a planar, finite, connected weighted graph (Γ̃, x̃) invariant un-
der rotation around a point in the complement of Γ̃, of angle 2π

d for some odd inte-
ger d. Let (Γ, x) be the resulting quotient weighted graph. Then, the partition func-
tion Zdimer(Γ, x) divides Zdimer(Γ̃, x̃) in the ring Z[x].

Proof. Let us fix an orientation of the edges of Γ satisfying the clockwise-odd condi-
tion. It lifts to an orientation of Γ̃ which trivially satisfies the same condition around
all faces except possibly the face containing the center of rotation; for this latter face,
it does satisfy the condition since d is odd. Hence, we have a d-fold cyclic covering of
connected weighted graphs (Γ̃, x̃) → (Γ, x), and Corollary 3.8 can be applied. Together
with Kasteleyn’s theorem, it yields the following equality in C[x]:

Zdimer(Γ̃, x̃)2 = det(AΓ̃) = det(AΓ) det(Aρ
Γ) = Zdimer(Γ, x)2 · det(Aρ

Γ) .

This ring being factorial, it follows that we have Zdimer(Γ̃, x̃) = Zdimer(Γ, x) · g for
some g ∈ C[x]. The fact that g belongs to Z[x] follows from Gauss’s lemma as in the
proof of Theorem 4.3. □

Our approach is limited by the fact that we consider graph coverings Γ̃ → Γ which,
in the case of normal coverings, correspond to free actions of G(Γ̃/Γ) on Γ̃. For this
specific question of enumerating dimers on symmetric planar graphs, the discussion
of Section IV of [26] is more complete, as non-free actions are also considered.

However, our approach is quite powerful when applied to non-planar graphs. In-
deed, recall that Kasteleyn’s theorem can be extended to weighted graphs embedded
in a closed (possibly non-orientable) surface Σ, but the computation of the dimer par-
tition function requires the Pfaffians of 22−χ(Σ) different (possibly complex-valued)
skew-adjacency matrices [36, 11, 9]. In particular, the partition function of any graph
embedded in the torus T2 is given by 4 Pfaffians. For the Klein bottle K, we also
need 4 Pfaffians, which turn out to be two pairs of conjugate complex numbers, so 2
well-chosen Pfaffians are sufficient. We now illustrate the use of Theorem 3.6 in these
two cases.

Let us first consider a toric graph Γ ⊂ T2, and let Γ̃ = Γmn denote the lift of Γ
by the natural m × n covering of the torus by itself. This covering is normal with
Galois group G(Γ̃/Γ) ≃ Z/mZ ⊕ Z/nZ. This group being abelian, all the irreducible
representations are of degree 1; more precisely, they are given by {ρ(z, w)}wm=1, zn=1,
where ρ(z, w) maps a fixed generator of Z/mZ (resp. Z/nZ) to w ∈ C∗ (resp. z ∈ C∗).
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Figure 1. A graph Γ embedded in the Klein bottle K (pictured as
a square with opposite sides identified according to the arrows), and
the lift Γmn ⊂ K, here with m = 2 and n = 3.

Writing Pmn(z, w) = det(Aρ(z,w)
Γmn

) and P1,1 = P , Corollary 3.9 immediately yields the
equality

Pmn(1, 1) =
∏

zn=1

∏
wm=1

P (z, w) .

This is the well-known Theorem 3.3 of [25], a result of fundamental importance in the
study of the dimer model on biperiodic graphs.

Let us now consider a weighted graph Γ embedded in the Klein bottle K, and
let Γ̃ = Γmn denote the lift of Γ by the natural m × n cover Kmn → K of the
Klein bottle by itself (with n odd), as illustrated in Figure 1. Now, we can inter-
pret the two skew-adjacency matrices of Γ̃ = Γmn used in the computation of the
corresponding dimer partition function as weighted adjacency operators twisted by 1-
dimensional representations ρ, ρ′ of π1(Kmn) < π1(K). Using Theorem 3.6, we see
that these matrices are conjugate to the skew-adjacency operators on Γ ⊂ K twisted
by the corresponding induced representations ρ#, (ρ′)# of π1(K). Unlike that of the
torus, the fundamental group of the Klein bottle is not abelian, so the representa-
tions ρ#, (ρ′)# need not split as products of 1-dimensional representations. It turns
out that they split as products of representations of degree 1 and 2, yielding a closed
formula for Zdimer(Γmn, x) in terms of determinants of Aτ

Γ, with τ of degree 1 and 2.
This result is at the core of the study of the dimer model on Klein bottles of the
first-named author [10].

As a final remark, let us note that all the considerations of this subsection can be
applied equally well to the Ising model, either via the use of Kac-Ward matrices [17],
or via skew-adjacency matrices on the associated Fisher graph [12].

4.3. Further combinatorial applications. We conclude this article with a very
brief and informal description of additional applications of our results.

As discovered by Forman [13], the determinant of ∆ρ
G with deg(ρ) = 1 can be

expressed as a sum over cycle-rooted spanning forests (CRSFs) in G, each forest be-
ing counted with a complex weight depending on ρ. If there is a finite connected
covering G̃ → G and a degree 1 representation of π1(G̃, ṽ0) such that the induced
representation of π1(G, v0) admits a degree 1 subrepresentation ρ′, then the CRSF
partition function on G twisted by ρ′ divides the partition function on G̃ twisted by ρ,
in the ring C[x]. Furthermore, in the case of a normal abelian covering of degree d,
Corollary 3.9 gives a factorisation of the CRSF partition function of G̃ in terms of d
CRSF partition functions of G.

Finally, let X be a finite CW-complex of dimension r with weights x = (xe)e
associated to the cells of top dimension. Let G be the weighted graph with vertex set
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given by the (r − 1)-dimensional cells of X, two such vertices being connected by an
unoriented edge of G each time they are in the boundary of an r-dimensional cell. (Note
that if r = 1, then the 1-dimensional cell complex X is nothing but the geometric
realisation of the graph G.) Finally, let Γ denote the weighted graph obtained from G as
in Example 3.3. Then, the resulting operator AΓ is the Laplacian ∆X acting on r-cells
of X. This operator can be used to count so-called higher dimensional rooted forests
in X, see [18, 5] and references therein. Using Corollary 3.8, it is now straightforward
to prove that, given any finite cover X̃ → X, the corresponding rooted forest partition
function of X divides the rooted forest partition function of X̃, extending Theorem 4.3
to higher dimensional objects.

Acknowledgements. D.C. thanks Pierre de la Harpe and Anders Karlsson for useful
conversations. The authors thank the referees for their constructive comments, and
Thierry Lévy for suggesting a simpler proof of the main result.

Appendix A. Addendum

After our paper was in press, we became aware of the article [7] whose main result is
very similar to Theorem 4.3. In a nutshell, Theorem 1.3 of [7] extends the spanning
tree part of our Theorem 4.3 from graphs to digraphs, showing the divisibility of the
partition functions enumerating the corresponding combinatorial objects, so-called
rooted arborescences. Note that this result can easily be obtained by our methods
using the digraph version of the matrix-tree theorem.

In Conjecture 1.7 of [7], it is asked whether the (integer) coefficients of the quotient
polynomial are always non-negative. Moreover, Conjecture 5.5 of [7] asserts that this
polynomial can be expressed as a sum over tuples of vector fields on G. The authors
prove their conjectures in the case of coverings of degree 2. The aim of this addendum
is to provide an affirmative answer to these conjectures in the case of arbitrary degree
coverings of (undirected) graphs.

To state the corresponding result, recall that a (non-zero) vector field on a directed
graph G is a directed subgraph of G consisting of one outgoing edge for each vertex
of G. We let V(G) denote the set of vector fields on G. Note that vector fields appear
in [13] and are also known as oriented cycle rooted spanning forests, see e.g. [23].

Theorem A.1. Let G̃ be a covering graph of degree (d+1) of a finite connected graph G
endowed with edge-weights x = {xe}e∈E, and let x̃ denote these weights lifted to the
edges of G̃. Then ZST(G, x) divides ZST (G̃, x̃) in the ring Z[x], and the quotient can
be expressed as

(2) ZST(G̃, x̃)
ZST(G, x) =

∑
(γ1,...,γd)∈V(G)d

f(γ1, . . . , γd)
d∏

k=1

∏
e∈γk

xe

for some non-negative integer-valued map f : V(G)d → {0, 1, 2, . . . }.

Let us stress that the right-hand side of (2) is not written as a linear combination
of distinct monomials: in particular, upon shuffling elements of a d-tuple of distinct
vector fields, one obtains the same monomial

∏d
k=1

∏
e∈γk

xe.

Proof. Let us use the same notations as in the proof of Theorem 4.3. We know
from that theorem that the quotient ZST (G̃, x̃)/ZST(G, x) is a homogeneous integer-
coefficient polynomial equal to det ∆ρ

G ∈ Z[x]. We thus need to show the following two
facts:

1. the coefficients of this polynomial are non-negative;
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2. for each monomial
∏

e∈E xne
e , there exists (γ1, . . . , γd) ∈ V(G)d such that for

each edge e ∈ E, whose oriented versions we denote by {e, e}, we have that
ne =

∑d
k=1

(
1{e∈γk} + 1{e∈γk}

)
.

We start with the first assertion concerning the non-negativity of the coefficients.
Let us first recall how the representation ρ of π1(G, v0) is obtained (see Example 2.7),
and investigate some of its properties. Consider the representation 1# of π1(G, v)
induced by the trivial representation of π1(G̃, ṽ): it is given by the action by left
multiplication of π1(G, v) on the vector space Z with basis π1(G, v)/π1(G̃, ṽ). Fix the
inner product ⟨·, ·⟩ on Z with respect to which this basis is orthonormal. Since 1#

acts by permutation on the elements of this basis, this representation is unitary with
respect to the inner product defined above. Moreover, since Z is finite-dimensional,
we have an orthogonal decomposition Z = C ⊕W , where C is generated by the sum
of the basis vectors and W consists of vectors with vanishing sum of coordinates.
This leads to a decomposition 1# = 1 ⊕ ρ, with ρ the representation appearing in
the polynomial det ∆ρ

G ∈ Z[x]. Since 1# is unitary, we have now shown that ρ is a
unitary representation. Hence, we are left with the proof that the coefficients of the
polynomial det ∆ρ

G are non-negative whenever ρ is a unitary representation.
To do so, let us consider a unitary connection Φ = (φe)e∈D representing the

unitary representation ρ ∈ GL(W ) (recall subsection 2.4), which defines a twisted
Laplacian ∆Φ

G whose gauge-equivalence class is ∆ρ
G. In order to factor ∆Φ

G , we in-
troduce a refinement of the connection as in [23]: for each directed edge e ∈ D,
consider unitary automorphisms φs(e),e, φe,t(e) ∈ GL(W ) such that φe,t(e) = φ−1

s(e),e

and φe = φs(e),e ◦φe,t(e). Let us further define the spaces of W -valued forms on G via

Ω0(G,W ) = {f : V → W} = WV and Ω1(G,W ) = {α : D → W | αe = −αe} ≃ W E .

Note that the inner product ⟨·, ·⟩ on W naturally extends to inner products
on Ω0(G,W ) and Ω1(G,W ) via

(f, g)Ω0 =
∑
v∈V

⟨f(v), g(v)⟩ and (α, β)Ω1 = 1
2

∑
e∈D

⟨α(e), β(e)⟩

for f, g ∈ Ω0(G,W ) and α, β ∈ Ω1(G,W ). Next, we define twisted coboundary and
boundary maps

δΦ : Ω0(G,W ) → Ω1(G,W ) and ∂Φ : Ω1(G,W ) → Ω0(G,W )

by

δΦf(e) = φe,t(e)f (t(e)) − φ−1
s(e),ef (s(e)) and ∂Φα(v) = −

∑
e∈Dv

φs(e),e α(e)

for f ∈ Ω0(G,W ), α ∈ Ω1(G,W ), v ∈ V and e ∈ D. Since the automorphisms φs(e),e

and φe,t(e) are unitary, one can now check that the maps δΦ and ∂Φ are adjoint of one
another. In other words, for all f ∈ Ω0(G,W ) and α ∈ Ω1(G,W ), there is an equality
between

(f, ∂Φα)Ω0 =
∑
v∈V

⟨f(v), ∂Φα(v)⟩ = −
∑
v∈V

∑
e∈Dv

⟨f(v), φs(e),eα(e)⟩

= −
∑
e∈D

⟨f(s(e)), φs(e),eα(e)⟩
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and

(δΦf, α)Ω1 = 1
2

∑
e∈D

⟨δΦf(e), α(e)⟩

= 1
2

∑
e∈D

(
⟨φe,t(e)f(t(e)), α(e)⟩ − ⟨φ−1

s(e),ef(s(e)), α(e)⟩
)

= 1
2

∑
e∈D

(
−⟨f(s(e)), φs(e),eα(e)⟩ − ⟨f(s(e)), φs(e),eα(e)⟩

)
= −

∑
e∈D

⟨f(s(e)), φs(e),eα(e)⟩ .

Finally, we let diagx denote the block-scalar map on Ω1(G,W ) equal to xe on the
block W indexed by the edge e. For each f ∈ Ω0(G,W ) and v ∈ V, we now have

(∂Φ ◦ diagx ◦ δΦ)(f)(v) =
∑

e∈Dv

xeφs(e),e

(
φ−1

s(e),ef (s(e)) − φe,t(e)f (t(e))
)

=
∑

e∈Dv

xe [f (s(e)) − φef (t(e))] = ∆Φ
G (f)(v) .

In view of this factorisation ∆Φ
G = ∂Φ◦diagx◦δΦ, we can now compute det ∆ρ

G = det ∆Φ
G

by an application of the Cauchy–Binet formula. For this purpose, we identify linear
maps with matrices in orthonormal bases of Ω0(G,W ) and Ω1(G,W ) induced by
concatenating copies of a given orthonormal basis of W .

For a matrix M , we will denote by M I
J the sub-matrix of M indexed by rows I

and columns J , and we omit I or J in this notation when it is equal to the full set of
indices. With a slight abuse of notation, we denote by δ the matrix of δΦ and by ∂ the
matrix of ∂Φ with respect to the above chosen orthonormal bases. Setting d = dimW ,
the Cauchy–Binet formula yields

det ∆Φ
G =

∑
J⊂E×{1,...,d}

|J|=d|V|

det ∂J det(diagx)J
J det δJ .

Since det(diagx)J
J =

∏
e∈E xne(J)

e with ne(J) = |J ∩ {e} × {1, . . . , d}|, we find that the
coefficient of an arbitrary monomial

∏
e∈E xne

e in the above expansion is equal to

(3)
∑

J⊂E×{1,...,d}, |J|=d|V|
ne(J)=ne,∀e∈E

det ∂J det δJ =
∑

J⊂E×{1,...,d}, |J|=d|V|
ne(J)=ne,∀e∈E

|det ∂J |2 ,

using the fact that the maps δΦ and ∂Φ are adjoint. This shows that this coefficient
is non-negative, and concludes the proof of the first assertion.

Let us now prove the second one. Let (ne)e∈E be a tuple of non-negative integers
which corresponds to one of the monomials of our polynomial det ∆Φ

G . Since the co-
efficient of this monomial is given by the right-hand side of (3) and is non-zero, there
exists J ⊂ E × {1, . . . , d} satisfying |J | = d|V| and ne(J) = ne,∀e ∈ E, such that

(4) |det ∂J |2 ̸= 0 .

Let us write ∂ = (∂i
j)i∈V×{1,...,d},j∈E×{1,...,d}. By (4), and using the expansion of the

determinant as a sum over permutations, there exists a bijection σ : V×{1, . . . , d} → J
such that

(5)
∏

i∈V×{1,...,d}

∂i
σ(i) ̸= 0 .
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Fix k ∈ {1, . . . , d}. For each v ∈ V, set i = (v, k) and let e ∈ E and ℓ ∈ {1, . . . , d}
be defined by σ(i) = (e, ℓ). Since ∂i

σ(i) ̸= 0 by (5), we see that v must be one of the
boundary-vertices of e. Let e ∈ Dv be the oriented version of e for which v = s(e) and
set γk(v) = e. (If e is a self-loop, simply pick an arbitrary orientation.) By definition,
the collection (γk(v))v∈V ∈

∏
v∈V Dv defines an element γk of V(G). Furthermore, by

construction and since σ is a bijection, for each edge e ∈ E, whose oriented versions
we denote by {e, e}, we have

ne = ne(J) =
∣∣∣σ−1 ({e} × {1, . . . , d})

∣∣∣
=

d∑
k=1

∑
v∈V

1{σ(v,k)∈{e}×{1,...,d}} =
d∑

k=1

(
1{e∈γk} + 1{e∈γk}

)
.

This concludes the proof. □

We note that the assertion proved in the second part of the proof of Theorem A.1
can also be obtained as an easy corollary of [19, Theorem 5.1]. A slightly stronger
version of that assertion appears in [20] as well.

As a final remark, note that our method of proof adapts partly to the setup of
digraphs. However, it fails, without further input, to prove the full Conjecture 5.5
of [7]. Indeed, our argument to show the non-negativity of f relies on a symmetry
property which does not hold for general digraphs.
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