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Cycle type factorizations in GLnFq

Graham Gordon

Abstract Recent work by Huang, Lewis, Morales, Reiner, and Stanton suggests that the regu-
lar elliptic elements of GLnFq are somehow analogous to the n-cycles of the symmetric group.
In 1981, Stanley enumerated the factorizations of permutations into products of n-cycles. We
study the analogous problem in GLnFq of enumerating factorizations into products of regu-
lar elliptic elements. More precisely, we define a notion of cycle type for GLnFq and seek to
enumerate the tuples of a fixed number of regular elliptic elements whose product has a given
cycle type. In some cases, we provide explicit formulas. Our main tool is a standard character-
theoretic technique due to Frobenius, which we make use of by finding simplified formulas for
the necessary character values. For every case in which we are not able to compute an explicit
formula, we at least determine the asymptotic behavior. We conclude with some results about
the polynomiality of our enumerative formulas and some open problems.

1. Introduction
Factorization enumeration has a long, ongoing history filled with interesting combina-
torics and topology [3, 5, 6, 8, 14, 17, 33]. For example, in [28], Stanley enumerated the
ordered factorizations of an arbitrary permutation in Sn into a product of n-cycles.
We are interested in finding an analogue of Stanley’s result for the finite general linear
group GLn Fq.

We introduce some notation in order to state Stanley’s result. For each partition
µ ⊢ n, let Cµ ⊂ Sn denote the conjugacy class consisting of permutations with cycle
type µ. Let mi(µ) denote the multiplicity of i in µ. For λ ⊢ n, let χλ

µ denote the
irreducible character χλ of Sn corresponding to λ evaluated on an element of Cµ.
Let N = {1, 2, 3, . . .} denote the positive integers. For any µ ⊢ n and k ∈ N, define

(1) gk,µ = #{(t1, . . . , tk) ∈ Ck
(n) : t1 · · · tk ∈ Cµ}.

The quantity gk,µ is #Cµ times as large as the aforementioned quantity Stanley com-
putes.
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Theorem 1.1 (Stanley [28, Theorem 3.1]). For all n, k ∈ N and µ ⊢ n, the number of
ordered k-tuples of n-cycles whose product has cycle type µ is

(2) gk,µ =
#Ck

(n) · #Cµ

#Sn
·

n−1∑
r=0

(−1)rkχ
(n−r,1r)
µ(

n−1
r

)k−1 ,

and, more explicitly,
(3)

gk,µ

#Cµ
= (n − 1)!k−1

n

n−1∑
r=0

(−1)rk(
n−1

r

)k−1

∑
ν⊢r

(−1)
∑

a⩾1
m2a(ν)

(
m1(µ) − 1

m1(ν)

) r∏
j=2

(
mj(µ)
mj(ν)

)
.

Theorem 1.1 was proved using a character-theoretic technique due to Frobenius
which we describe in Section 2.1. The simplicity of (2) comes from the fact that
χλ

(n) = 0 unless λ is a hook, i.e., λ = (n − r, 1r) for some r ∈ {0, . . . , n − 1} (see
Corollary 2.3). The more explicit phrasing (3) is obtained by evaluating the hook
characters explicitly [28, Lemma 2.2]. For some historical context, see the work of
Bertram–Wei [1], Boccara [2], and Walkup [34]. In all three papers, the authors de-
veloped formulas enumerating factorizations of permutations into products of two
cycles of various lengths. The use of character theory appears in [1, Section 3], and
their results coincide with Stanley’s in some cases. Stanley’s result of course only ap-
plies to factoring permutations into products of n-cycles, but it applies to cases with
more than two factors.

Let GLn Fq denote the group of n × n invertible matrices with entries in the finite
field Fq with q elements. Given a matrix g ∈ GLn Fq, we define the cycle type of g
to be µ = (µ1, . . . , µℓ) ⊢ n if the degrees of the irreducible factors of the characteristic
polynomial of g are µ1, . . . , µℓ in weakly decreasing order, and we write type(g) = µ.
This definition is built on work by Kung [18] and Stong [32] which suggests that a
degree-m divisor of the characteristic polynomial of a matrix in GLn Fq is the analog
of a cycle of length m in a permutation in Sn. For each µ ⊢ n, let Tµ(q) ⊂ GLn Fq

denote the subset of matrices of cycle type µ. Note that {Tµ(q) : µ ⊢ n} is a partition
of GLn Fq.

Recent work by Huang, Lewis, Morales, Reiner, and Stanton [16, 21, 22] inves-
tigated the regular elliptic elements of GLn Fq, which are those matrices whose
characteristic polynomial is irreducible over Fq. Their work suggests that the regular
elliptic elements are analogous to the n-cycles in Sn from the perspective of enumer-
ating factorizations. This agrees with our definition of cycle type, as both the n-cycles
of Sn and the regular elliptic elements of GLn Fq have cycle type (n).

We also consider the regular semisimple elements of GLn Fq, which are those
matrices whose characteristic polynomial has no repeated irreducible factors. Let
T □

µ (q) denote the set of regular semisimple elements with cycle type µ. Note that
{T □

µ (q) : µ ⊢ n} is not a partition of GLn Fq in general, as not all elements of GLn Fq

are regular semisimple for n ⩾ 2. However, as the following result implies, for large
q, an arbitrarily large proportion of GLn Fq is regular semisimple. Let zµ denote the
cardinality of the centralizer of an element of Cµ in Sn.

Corollary 1.2 (to Corollary 2.16). For all n ∈ N and µ ⊢ n,

lim
q→∞

#T □
µ (q)

# GLn Fq
= lim

q→∞

#Tµ(q)
# GLn Fq

= 1
zµ

.
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In analogy with (1), we define for any µ ⊢ n, k ∈ N, and prime power q,

gk,µ(q) = #{(t1, . . . , tk) ∈ T(n)(q)k : t1 · · · tk ∈ Tµ(q)}, and

g□
k,µ(q) = #{(t1, . . . , tk) ∈ T(n)(q)k : t1 · · · tk ∈ T □

µ (q)}.

In this paper, we consider the quantities gk,µ(q) and g□
k,µ(q) to be GLn Fq-analogues

of gk,µ, and we seek simple formulas for computing them. Note that gk,µ(q) = g□
k,µ(q)

if all the parts of µ are distinct. Furthermore, as suggested by Corollary 1.2 and
proved in Theorem 1.8 below, gk,µ(q) and g□

k,µ(q) have the same asymptotic behavior
as q → ∞.

The following theorem is our first main result. To state the theorem, and through-
out the paper, we make use of the standard q-analogues

[m]q = 1 + q + q2 + · · · + qm−1,(4)

[m]q! =
m∏

ℓ=1
[ℓ]q, and(5)

[
m
ℓ

]
q

= [m]q!
[ℓ]q![m − ℓ]q! ,(6)

each of which is an integer polynomial in q, for non-negative integers ℓ ⩽ m.

Theorem 1.3. For all n, k ∈ N with n > 2, all prime powers q, and all µ ⊢ n with
m1(µ) = 1, we have

(7) g□
k,µ(q) =

#T(n)(q)k · #T □
µ (q)

# GLn Fq
·

n−1∑
r=0

(−1)rkχ
(n−r,1r)
µ(

q(r+1
2 ) ·

[
n−1

r

]
q

)k−1 .

Compare (7) with the analogous formula (2) from the symmetric group. As one
particular consequence, it follows that, for the cases of µ discussed in Theorem 1.3,
we have

(8) lim
q→1

g□
k,µ(q) · # GLn Fq

#T □
µ (q) · #T(n)(q)k

= gk,µ · #Sn

#Cµ · #Ck
(n)

,

where the limit is taken after substituting for each term on the left side the rational
function which agrees with it on prime powers. Equation (8) gives some justification
that g□

k,µ(q) is a q-analogue of gk,µ in the traditional q → 1 sense.
The following special case of Theorem 1.3 is especially simple.

Corollary 1.4. For all n, k ∈ N with n > 2 and all prime powers q, we have

(9) gk,(n−1,1)(q) = g□
k,(n−1,1)(q) =

#T(n)(q)k · #T(n−1,1)(q)
# GLn Fq

·

(
1 + (−1)nk−n−k

q(n
2)(k−1)

)
.

Compare (9) with the analogous formula

(10) gk,(n−1,1) =
#Ck

(n) · #C(n−1,1)

#Sn
·
(
1 + (−1)nk−n−k

)
from the symmetric group. Observe that (10) is zero unless both n and k are even,
which can be proved by comparing the sign of an (n−1)-cycle with the sign of a k-fold
product of n-cycles. Interestingly, this behavior is not mimicked by (9), highlighting
a fundamental difference between cycle type in GLn Fq and cycle type in Sn.

Our second main result is an explicit, albeit complicated, formula for gk,(n)(q),
which involves nested sums over divisors of n. We require some more notation before
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stating the result. We denote the usual Möbius function by µµµ to differentiate it from
a partition named µ. The rest of the necessary notation is contained in Table 1 below.

Theorem 1.5. For all n, k ∈ N and prime powers q, we have

(11) gk,(n)(q) = Pn,k+1(q)
∑
d|n

(−1)n(k+1)/ddkDn,k+1,d(q)
∑
c|d

µµµ(d/c)Cn,k+1,c(q),

using the notation in Table 1.

The analogous formula from Sn is

(12) gk,(n) = (n − 1)!k

n

n−1∑
r=0

(
(−1)r(

n−1
r

))k−1

.

Unfortunately, it is not immediately obvious how to compare (11) with (12).

Table 1. Functions and their values for n ∈ N, d | n, c | d, and prime
powers q. The lcm in the denominator of Cn,k,c(q) is computed in Z.

f f(q)

γn q(n
2)(q − 1)n[n]q!

Pn,k
1

γn(q)

(
(−1)nγn(q)

n(qn−1)

)k

degn,d,r qd(r+1
2 ) ·

∏n

i=1
(qi−1)∏n/d

j=1
(qjd−1)

·
[

n/d−1
r

]
qd

Dn,k,d

∑n
d −1
r=0 (−1)rk degn,d,r(q)2−k

Cn,k,c

∑
s1,...,sk|n

(qn−1)
∏k

i=1
[(qsi −1)µµµ(n/si)]

lcm
(

qn−1
qc−1 ,qs1 −1,...,qsk −1

)
Remark 1.6. There are many cases not addressed by Theorems 1.3 and 1.5. One
family of unaddressed cases is when m1(µ) > 1. Another is when ℓ > 1 and m1(µ) = 0.
It is an open problem to find efficient formulas for gk,µ(q) in these cases.

Our approach to proving Theorems 1.3 and 1.5 is to apply the same character-
theoretic technique due to Frobenius that Stanley used in [28]. Fortunately, Green ex-
plicitly computed all characters of the finite general linear groups [15]. Using Green’s
results, we prove the following formula for evaluating primary characters of GLn Fq

on regular semisimple elements. See Sections 2 and 3 for missing notation. In particu-
lar, primary characters are denoted χf 7→λ, where f ∈ Fq[z]∖{z} is monic, irreducible,
and non-constant, and λ is a partition such that |λ| · deg f = n. Also note that ℓf ∈ Z
and the codomain of the function θ is C×.

Theorem 1.7. Suppose n ∈ N, d | n, λ ⊢ n/d, q is a prime power, f ∈ Fd(q), µ ⊢ n,
g ∈ T □

µ (q), and h1, . . . , hℓ(µ) are the distinct irreducible factors of the characteristic
polynomial of g. If some part of µ is not divisible by d, then χf 7→λ(g) = 0. Otherwise,
there exists µ̃ ⊢ n/d such that µ = dµ̃, and

(13) χf 7→λ(g) = (−1)
n
d (d−1)χλ

µ̃

ℓ(µ)∏
i=1

1
µ̃i

∑
βi∈Fqµi

hi(βi)=0

θ(βi)ℓf ·[µ̃i]
qd .
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Theorem 1.7 also enables us to determine the asymptotic behavior of gk,µ(q). We
define

(14) pk,µ(q) = gk,µ(q)
#T(n)(q)k

,

which is the probability that the product of a randomly chosen k-tuple of regular
elliptic elements is in Tµ(q). We are only concerned with the nontrivial cases k ⩾ 2.
Of course, Theorems 1.3 and 1.5 provide exact formulas for pk,µ(q) in certain special
cases, but we are also interested in the behavior of pk,µ(q) as q becomes arbitrarily
large. For the case of regular semisimple elements, we define

(15) p□k,µ(q) =
g□

k,µ(q)
#T(n)(q)k

Again, Theorems 1.3 and 1.5 provide exact formulas for p□k,µ(q) in some special cases.
However, we are able to compute limq→∞ pk,µ(q) and limq→∞ p□k,µ(q) for all µ ⊢ n.

Theorem 1.8. For all n, k ∈ N with k ⩾ 2 and µ ⊢ n, we have

(16) lim
q→∞

pk,µ(q) = lim
q→∞

p□k,µ(q) = 1
zµ

.

In light of Corollary 1.2, one interpretation of Theorem 1.8 is that, for large q,
random products of regular elliptic elements are approximately distributed uniformly
throughout GLn Fq. We do not currently have a heuristic explanation for this behavior,
nor do we know how random products of regular elliptic elements are distributed
among individual conjugacy classes.

Even though Theorem 1.8 describes the asymptotics of gk,µ(q) as q → ∞, it does
not address the specific behavior of gk,µ(q) for small q. It turns out that Theorem 1.3
gives a family of examples where the function g□

k,µ(q) is a polynomial in q—see Corol-
lary 6.1. However, gk,(n)(q) is not necessarily a polynomial, or even rational, function
of q. This is because the lcm function in Cn,k,c(q) is not rational. Instead, we have
the following result.

Corollary 1.9 (to Theorem 1.5). Suppose n, k ∈ N and n is prime. There exist
polynomials f0, f1, . . . , fn−1 ∈ Q[x] depending only on n and k with the property that,
for each i ∈ {0, . . . , n − 1}, we have
(17) gk,(n)(q) = fi(q) for all prime powers q ≡ i (mod n).
In other words, gk,(n)(q) is a quasipolynomial function of q.

The rest of the paper is organized as follows. In Section 2, we discuss some prelim-
inary information, including the character-theoretic technique and details regarding
the symmetric groups, finite fields, and the finite general linear groups. In Section 3,
we provide a concise retelling of Green’s original formulation of the characters of the
finite general linear groups [15]. In Section 4, we prove Theorems 1.3 and 1.5, our
main enumerative results. In Section 5, we prove Theorem 1.8, our main asymptotic
result. In Section 6, we discuss polynomiality, prove Corollary 1.9, and list some open
problems.

2. Preliminaries
2.1. The character theory approach. We assume basic knowledge of the ordi-
nary complex character theory of finite groups, as in Fulton–Harris [12] or Serre [27].
We will make use of a standard character-theoretic technique based on the follow-
ing result due to Frobenius. For a straightforward proof, see Zagier’s Appendix A
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in Lando–Zvonkin [19]. Let G be a finite group, and let Irr(G) denote the set of all
irreducible characters of G. For χ ∈ Irr(G), let deg χ denote the value of χ at the
identity element of G.

Theorem 2.1 (Frobenius [9]). Let k be a positive integer, and, for each i ∈ {1, . . . , k},
let Ai be a union of conjugacy classes in G. For any g ∈ G, the number of tuples
(t1, . . . , tk) ∈ A1 × · · · × Ak such that t1 · · · tk = g is given by

(18) 1
#G

∑
χ∈Irr(G)

(deg χ)1−kχ(g−1)
k∏

i=1

∑
t∈Ai

χ(t).

Corollary 2.2. For all n, k ∈ N, µ ⊢ n, and prime powers q,

(19) gk,µ(q) = 1
# GLn Fq

∑
χ∈Irr(GLn Fq)

(deg χ)1−k

 ∑
g∈T(n)(q)

χ(g)

k ∑
h∈Tµ(q)

χ(h)

 .

Moreover, the same is true when both gk,µ(q) is replaced with g□
k,µ(q) and Tµ(q) is

replaced with T □
µ (q).

Proof. Consider applying Theorem 2.1 to the case of k +1 factors, the first k of which
are regular elliptic and the last of which has cycle type µ. Each Tµ(q) is a union
of conjugacy classes (see Section 2.4.2), and so the hypotheses of Theorem 2.1 are
satisfied. Moreover, each Tµ(q) is closed under taking inverses, implying factorizations
of the form

(t1, . . . , tk) ∈ T(n)(q)k such that t1 · · · tk ∈ Tµ(q)
are in bijection with factorizations of the form

(t1, . . . , tk, tk+1) ∈ T(n)(q)k × Tµ(q) such that t1 · · · tk+1 = id .

Thus,
gk,µ(q) = #{(t1, . . . , tk, tk+1) ∈ T(n)(q)k × Tµ(q) : t1 · · · tk+1 = id}.

Applying Theorem 2.1 with
A1 = A2 = · · · = Ak = T(n)(q), Ak+1(q) = Tµ(q), and g = id

gives the result since χ(g) = χ(id) = deg χ. The final claim regarding regular semisim-
ple elements follows from the same argument. □

2.2. The symmetric groups and partitions. We will require some specific infor-
mation about the irreducible characters of the symmetric group Sn. This information
can be found in Stanley [29] and Sagan [26]. See also Fulton–Harris [12] or Fulton [11]
for added discussion on the irreducible characters of the symmetric groups.

A partition of n is a weakly decreasing sequence of non-negative integers µ =
(µ1, µ2, . . .) such that

∑
i⩾1 µi = n, denoted by µ ⊢ n. Denote by ∅ the unique

partition of 0 and by □ the unique partition of 1. Let Par denote the set of all partitions
of all non-negative integers. Each µi is called a part of µ. The number of nonzero
parts of µ is called the length of µ and is denoted by ℓ(µ). The conjugate of µ is
denoted by µ′ and defined by µ′

i = #{j ⩾ 1 : µj ⩾ i} for all i ⩾ 0. The multiplicity
of a positive integer i in a partition µ is defined as #{j ⩾ 1 : µj = i} and denoted
by mi(µ). In general, if some part of a partition is repeated, we denote this with a
superscript. Moreover, we omit zeros. For example, (3, 24) is the same as (3, 2, 2, 2, 2).
A partition of the form (n − r, 1r) ⊢ n for some r ∈ {0, . . . , n − 1} is called a hook.
An important statistic on partitions is µ 7→ zµ defined by zµ =

∏
i⩾1 imi(µ) · mi(µ)!.

If d is a positive integer, then we use dµ to denote the partition (dµ1, dµ2, . . .) of dn.
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The conjugacy classes of Sn are in bijection with the partitions of n as follows.
If π = (π1,1, . . . , π1,µ1) · · · (πℓ,1, . . . , πℓ,µℓ

) ∈ Sn is a cycle decomposition of π with
µ1 ⩾ µ2 ⩾ · · · ⩾ µℓ, then the conjugacy class of π is indexed by the partition
µ = (µ1, µ2, . . . , µℓ). The partition µ is called the cycle type of the permutation π.
Let Cµ denote the conjugacy class consisting of those permutations with cycle type µ.
The statistic µ 7→ zµ has the following algebraic interpretation. If σ ∈ Sn has cycle
type µ, then zµ is the number of permutations in Sn which commute with σ. By the
orbit-stabilizer theorem [7, Proposition 4.3.6], #Cµ = n!/zµ.

The irreducible characters of Sn are indexed by partitions of n in a standard way.
If λ ⊢ n, let χλ denote the character indexed by λ. Let χλ

µ denote χλ evaluated
on any element of Cµ. There is a combinatorial formula, known as the Murnaghan–
Nakayama (MN) rule, for computing the irreducible character values for the symmet-
ric groups [24, 25]. See [29, Theorem 7.17.3] for a full statement and proof. We will
use the following two special cases.

Corollary 2.3 (to the MN rule). For all n ∈ N and λ ⊢ n, we have

(20) χλ
(n) =

{
(−1)r, λ = (n − r, 1r) for some r ∈ {0, . . . , n − 1},

0, otherwise,

and

(21) χλ
(n−1,1) =


1, λ = (n),
(−1)n, λ = (1n),
(−1)r−1, λ = (n − r, 2, 1r−2) for some r ∈ {2, . . . , n − 2},

0, otherwise.

2.3. Finite fields. We assume some basic knowledge about finite fields, all of which
can be found in Dummit–Foote [7]. Let q be a prime power. For all positive integers
m, there is a degree-m field extension Fqm of Fq. For positive integers m and m′, we
have the containment Fqm ⊂ Fqm′ if and only if m | m′. For any field F, let F× denote
the multiplicative group of its nonzero elements, called the unit group. The unit
group of any finite field is cyclic. Moreover, in the case m | m′, we have that F×

qm is a
subgroup of F×

qm′ .
Let F(q) ⊂ Fq[z] denote the set of monic, nonconstant, irreducible polynomials

over Fq, excluding z itself. For each d ∈ N, let Fd(q) = {f ∈ F(q) : deg f = d}. Let ⊔
denote disjoint union.

Lemma 2.4. For all d ∈ N and prime powers q,

(22) F×
qd =

⊔
c|d

⊔
f∈Fc(q)

{α ∈ F×
qc : f(α) = 0}.

Proof. Every element of F×
qd is the root of an element of F(q) with degree dividing d.

The union is disjoint because distinct monic, irreducible polynomials over Fq do not
have shared roots. □

For each n ∈ N, fix a generator ϵ of the cyclic group F×
qn! , and fix an injective

group homomorphism θ : F×
qn! → C× mapping ϵ 7→ e2πi/(qn!−1). Note that we omit

the dependence of ϵ on n and rely on context instead. For each d ∈ {1, . . . , n}, let
ϵd denote ϵ raised to the power (qn! − 1)/(qd − 1). The multiplicative order of ϵd is
qd − 1, and ϵd is a cyclic generator of F×

qd . Also, θ maps F×
qd isomorphically onto the

group of (qd − 1)th roots of unity.
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Corollary 2.5. For all n ∈ N, d ∈ {1, . . . , n}, and prime powers q,

(23) {ξ ∈ C× : ξqd−1 = 1} =
⊔
c|d

⊔
f∈Fc(q)

{θ(α) : α ∈ F×
qc , f(α) = 0}.

Proof. Apply θ to each element on the left and right sides of (22). □

For each d ∈ N, the Galois group of Fqd over Fq is cyclic of order d, generated by
the field automorphism

Fqd → Fqd , α 7→ αq.

Therefore, for each f ∈ Fd(q), if α is any root of f , then α, αq, αq2
, . . . , αqd−1 are

distinct and are all the roots of f . Since F×
qd is generated by ϵd, there exists some

ℓ ∈ Z such that ϵℓ
d is a root of f . Assign to f an arbitrary integer ℓf such that ϵ

ℓf

d is
a root of f . To combine the previous three sentences, we have for all d ⩽ n and all
f ∈ Fd(q) that

(24) f(z) =
d−1∏
i=0

(
z −

(
ϵ

ℓf

d

)qi)
.

Observe that the choice of ℓf is unique up to multiplication by powers of q and
addition of multiples of qd − 1. Our results are independent of the choice of ℓf .

In case we are considering a polynomial f with degree d dividing n, we will also
make use of the quantity ℓf · [n/d]qd , viewing it as an element of Z/(qn − 1). More
precisely, define the group isomorphism
(25) θn : F×

qn → Z/(qn − 1) by θn

(
ϵℓ

n

)
= ℓ mod qn − 1 ∀ℓ ∈ Z.

It follows that θn maps ϵℓ
d to ℓ · [n/d]qd .

Corollary 2.6 (to Lemma 2.4). For all n ∈ N, d | n, and prime powers q,

(26) {m · [n/d]qd : m ∈ Z/(qn − 1)} =
⊔
c|d

⊔
f∈Fc(q)

{θn(α) : α ∈ F×
qc , f(α) = 0}.

Proof. Apply θn to each element on the left and right sides of (22), recalling that
d | n and F×

qd is the unique subgroup of F×
qn of order qd − 1. □

Example 2.7. Consider the case q = 3, n = 4, and θ : ϵ 7→ ζ, where

ζ = e2πi/(qn!−1).

We write F3 as {0, 1, 2} under addition and multiplication modulo 3. We record in
Table 2 the polynomials f ∈ F(q) with degree dividing n, together with all possible
choices for ℓf modulo qd − 1 and all possible choices for ℓf · [n/ deg f ]qdeg f modulo
qn − 1. For the sake of brevity, we omit most of the degree four polynomials, of which
there are 18 total as per (34) below. Note that these values depend on the choice of ϵ.

We can also visualize the data from Table 2 in the complex plane as follows. Observe
that θ maps ϵn to

ξ = ζ
qn!−1
qn−1 ,

a (qn − 1)th = 80th root of unity. Given a choice of ℓf for some f in Table 2 with
degree d | n, we have

α = ϵ
ℓf

d = ϵ
ℓf ·[n/d]

qd

n

is a root of f ,

θ(α) = ξℓf ·[n/d]
qd ∈ C×, and θn(α) = ℓf · [n/d]qd ∈ Z/(qn − 1).

Algebraic Combinatorics, Vol. 5 #6 (2022) 1434



Cycle type factorizations in GLnFq

Table 2. Choices for ℓf and ℓf · [n/ deg f ]qdeg f with q = 3 and n = 4.

f ℓf ℓf · [n/ deg f ]qdeg f

z + 2 0 0
z + 1 1 40

z2 + 2z + 2 1, 3 10, 30
z2 + 1 2, 6 20, 60

z2 + z + 2 5, 7 50, 70
z4 + 2z3 + 2 1, 3, 9, 27 1, 3, 9, 27

z4 + 2z3 + z2 + 1 2, 6, 18, 54 2, 6, 18, 54
z4 + z3 + 2z + 1 4, 12, 28, 36 4, 12, 28, 36

...
...

...

Figure 1. Images under θ of roots of polynomials from Table 2

Figure 1 shows the complex plane and the images under θ of all the roots of all the
polynomials f ∈ F1(3) ⊔ F2(3) ⊔ F4(3). The images under θ of roots of polynomials
in F1(3) are labeled by the largest nodes, those for F2(3) by the medium-sized nodes,
and those for F4(3) by the smallest nodes.

One can observe in Figure 1 the following instance of Corollary 2.5. The images
under θ of the roots of polynomials in F1(3) ⊔ F2(3) form the set of (q2 − 1)th = 8th

roots of unity, pictorially represented by the medium and large nodes.
One can also observe the following instance of Corollary 2.6 in either Table 2

or Figure 1. The images under θn of the roots of polynomials in F1(3) ⊔ F2(3) are
0, 10, 20, . . . , 70. These are precisely the multiples of (qn−1)/(q2−1) = 10 in Z/(qn−1).

2.4. The finite general linear groups. The finite general linear group GLn Fq

is the group of n × n invertible matrices with entries in the finite field Fq with q
elements. We will occasionally have need to view the elements of GLn Fq abstractly
as linear transformations on an n-dimensional Fq-vector space. The cardinality of
GLn Fq is γn(q) as defined in Table 1 [30, Proposition 1.10.1].

Algebraic Combinatorics, Vol. 5 #6 (2022) 1435



G. Gordon

2.4.1. Indexing the GLn Fq conjugacy classes. We first discuss how to index the con-
jugacy classes and irreducible characters of GLn Fq. Let V = Fn

q . Then GLn Fq acts
on V via matrix multiplication.

Consider a fixed g ∈ GLn Fq. Let Vg denote the vector space V endowed with an
Fq[z]-module structure by defining the action Fq[z] × Vg → Vg to be (f(z), v) 7→
f(g)(v). The polynomial ring Fq[z] is a principal ideal domain, and V is finite-
dimensional as an Fq-vector space, hence Vg is finitely generated as an Fq[z]-module.
By the structure theorem for finitely generated modules over principal ideal do-
mains [7, Theorem 12.1.6], there exists a unique function λg : F(q) → Par such
that

(27) Vg
∼=

⊕
f∈F(q)

⊕
i⩾1

Fq[z]
/(

f(z)λg(f)i

)
as Fq[z]-modules, where λg(f)i denotes the ith part of λg(f). We say that g deter-
mines the isomorphism (27). Moreover, g1 and g2 are conjugate in GLn Fq if and
only if λg1 = λg2 . If g is clear from context, we omit the superscript from λg. The
function λ : F(q) → Par is said to index the conjugacy class of g ∈ GLn Fq, and we
denote this conjugacy class by Cλ.

Define the norm of an index λ : F(q) → Par to be

(28) ∥λ∥ =
∑

f∈F(q)

|λ(f)| · deg f.

Computing dimensions of each side in the isomorphism given in (27) implies the
equation n = ∥λ∥. Therefore, to each conjugacy class C ⊂ GLn Fq, we can associate
a unique index λ with n = ∥λ∥ such that C = Cλ. In [15], Green shows that the
condition n = ∥λ∥ is necessary and sufficient for λ to be the index of some conjugacy
class in GLn Fq. Thus, conversely, to every index λ with ∥λ∥ = n, there exists a unique
conjugacy class of GLn Fq with index λ.

Given λ, one can read off the characteristic and minimal polynomials of g as fol-
lows. The minimal polynomial is

∏
f∈F(q) fλ(f)1 , and the characteristic polynomial is∏

f∈F(q) f |λ(f)|. Moreover, we can use the isomorphism (27) to write down a specific
matrix whose conjugacy class is indexed by λ as follows. If h(z) = zn − an−1zn−1 −
· · · − a1z − a0 ∈ Fq[z], then the companion matrix of h is defined by

A(h) =


0 0 · · · 0 a0
1 0 · · · 0 a1
0 1 · · · 0 a2
...

. . .
...

0 0 · · · 1 an−1

 ,

where A(1) is the empty matrix. Given g ∈ GLn Fq which determines the isomorphism
(27), g is in the same conjugacy class as any block-diagonal matrix whose diagonal
blocks are those nonempty matrices A(fλ(f)i) for f ∈ F(q) and i ⩾ 1. Any block-
diagonal matrix with these diagonal blocks arranged in any order of non-increasing size
from the upper-left corner to the lower-right corner is said to be a rational canonical
form of g. Furthermore, if g itself is in this form, say that g is in rational canonical
form.

Example 2.8. Consider the matrix

g =

0 1 0
1 1 0
0 0 1

 ∈ GL3 F2.
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This matrix is block-diagonal, with diagonal blocks of size 2 and 1. The blocks are
the companion matrices of the polynomials z2 + z + 1 and z + 1 ∈ F2[z], respectively.
Thus, g is in rational canonical form. The conjugacy class of g has index λ defined by

λ(f) =


(1) if f = z2 + z + 1,

(1) if f = z + 1,

∅ otherwise.

The characteristic polynomial of g is (z + 1)(z2 + z + 1) = z3 + 1 ∈ F2[z], which is
also its minimal polynomial.

Define the support of an index λ by supp λ = {f ∈ F(q) : λ(f) ̸= ∅}. Observe
∥λ∥ < ∞ implies # supp λ < ∞. Call an index λ primary if # supp λ = 1. If λ is
primary with supp λ = {f} and λ(f) = λ, then we denote λ simply by f 7→ λ. For
example, z − 1 7→ (1n) is the index for the identity matrix of GLn Fq. We refer to a
conjugacy class itself as primary if its index is primary, and we refer to an element as
primary if it is a member of a primary conjugacy class.

The following result allows us to compute the sizes of conjugacy classes in GLn Fq.
For µ ⊢ n and i ∈ N, define si(µ) =

∑i
j=1 µj .

Theorem 2.9 ([30, Theorem 1.10.7]). For all n ∈ N, prime powers q, and λ : F(q) →
Par with ∥λ∥ = n, we have

(29) #Cλ = γn(q)∏
f∈F(q)

∏
i⩾1
∏mi(λ(f))

j=1
(
(qdeg f )si(λ(f)′) − (qdeg f )si(λ(f)′)−j

) .

Example 2.10. Consider GL3 F2. The degree 1, 2, and 3 polynomials in F(2) are
f1 = z + 1, f2 = z2 + z + 1, f3 = z3 + z2 + 1, and f̃3 = z3 + z + 1. There are six
functions λ : F(2) → Par satisfying ∥λ∥ = 3, which index the conjugacy classes and
irreducible characters of GL3 F2. The primary ones are

f1 7→ (1, 1, 1), f1 7→ (2, 1), f1 7→ (3), f3 7→ (1), and f̃3 7→ (1).
There is only one more left to define. We call it λ o. It is defined by

λ o(f) =


(1) if f = f1,

(1) if f = f2,

∅ otherwise.
We now name all of the conjugacy classes, indicate a member in rational canonical
form, and indicate what function F(2) → Par indexes the class.

The conjugacy class U1 of
[

1 0 0
0 1 0
0 0 1

]
is indexed by f1 7→ (1, 1, 1).

The conjugacy class U2 of
[

0 1 0
1 0 0
0 0 1

]
is indexed by f1 7→ (2, 1).

The conjugacy class U3 of
[

0 0 1
1 0 1
0 1 1

]
is indexed by f1 7→ (3).

The conjugacy class E of
[

0 0 1
1 0 0
0 1 1

]
is indexed by f3 7→ (1).

The conjugacy class Ẽ of
[

0 0 1
1 0 1
0 1 0

]
is indexed by f̃3 7→ (1).

The conjugacy class Co of
[

0 1 0
1 1 0
0 0 1

]
is indexed by λ o.

The conjugacy classes are named as follows. The unipotent classes are U1, U2, and
U3. The regular elliptic classes are E and Ẽ. The odd one out is Co. As an example
of Theorem 2.9, we compute the cardinality of U2. Recall that the index for U2 is

Algebraic Combinatorics, Vol. 5 #6 (2022) 1437



G. Gordon

primary with support {f1}. Furthermore, the image of f1 is (2, 1) = (2, 1)′ ⊢ 3, and
m1((2, 1)) = m2((2, 1)) = 1. By Theorem 2.9,

(30) #U2 = γ3(2)∏2
i=1
(
2si((2,1)) − 2si((2,1))−1

) = 2(3
2)[3]2!

(22 − 21)(23 − 22) = 21.

2.4.2. Cycle type, regular semisimple elements, and regular elliptic elements. Recall
the definition of cycle type for GLn Fq from the introduction. The definition given in
the introduction is equivalent to the following. For any matrix g ∈ GLn Fq, type(g) =
µ if and only if

mi(µ) =
∑

f∈Fi(q)

|λg(f)|

for each i ∈ {1, . . . , n}. Recall that we define, for µ ⊢ n and q a prime power,

(31) Tµ(q) = {g ∈ GLn Fq : type(g) = µ}.

Since conjugate matrices have the same characteristic polynomial, each Tµ(q) is a
union of conjugacy classes, and {Tµ(q) : µ ⊢ n} forms a partition of GLn Fq.

Example 2.11. Using the notation from Example 2.10 above, T(1,1,1)(2) = U1∪U2∪U3,
T(2,1)(2) = Co, and T(3)(2) = E ∪ Ẽ.

We now discuss a special class of matrices in GLn Fq, the regular semisimple
elements. An element of an algebraic group is called regular if the dimension of
its centralizer is equal to the dimension of a maximal torus of the group. A ma-
trix in GLn Fq is called semisimple if it is diagonalizable over an algebraic closure
of Fq. A matrix in GLn Fq is called regular semisimple if it is both regular and
semisimple. See Lehrer’s work [20] for a discussion on the regular semisimple variety
in algebraic groups in both characteristic zero and positive characteristic. In partic-
ular, Lehrer gives a formula [20, Corollary 8.5] enumerating the regular semisimple
elements in GLn Fq. Fulman gave the following combinatorial characterization of the
regular semisimple elements of GLn Fq.

Theorem 2.12 (Fulman [10]). For all n ∈ N and prime powers q, a matrix g ∈ GLn Fq

is regular semisimple if and only if λg(f) ∈ {∅, (1)} for all f ∈ F(q).

Remark 2.13. Theorem 2.12 explains our choice of the notation T □
µ (q) due to the

fact that the partition (1) can alternatively be represented by its Young diagram, □.

We will take Fulman’s characterization as the definition of regular semisimple el-
ements in this paper. In other words, we define an element of GLn Fq to be regular
semisimple if its characteristic polynomial has no repeated factors.

Corollary 2.14. Suppose n ∈ N, q is a prime power, g ∈ GLn Fq is regular semisim-
ple and h1, . . . , hℓ ∈ F(q) are the distinct irreducible factors of the characteristic
polynomial of g. Then g determines the isomorphism

(32) Vg
∼= Fq[z]/(h1(z)) ⊕ · · · ⊕ Fq[z]/(hℓ(z)).

Recall that we define, for µ ⊢ n and q a prime power,

(33) T □
µ (q) = {g ∈ Tµ(q) : g is regular semisimple}.

The set {T □
µ (q) : µ ⊢ n} is not a partition of GLn Fq in general because not all

matrices in GLn Fq are regular semisimple. However each T □
µ (q) is still a union of

conjugacy classes, and the set {T □
µ (q) : µ ⊢ n} at least partitions the set of regular

semisimple elements in GLn Fq.
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Example 2.15. Using the notation from Example 2.10 above, T □
(1,1,1)(2) is empty,

T □
(2,1)(2) = Co, and T □

(3)(2) = E ∪ Ẽ.

We now derive an explicit formula for #T □
µ (q) by combining Theorems 2.9 and 2.12.

As mentioned by Green in [15], we have

(34) #Fm(q) = 1
m

∑
s|m

µµµ(m/s)(qs − 1)

for all m ⩾ 1 and prime powers q, a result originally due to Gauss in the case that q
is prime [13].

Corollary 2.16. Suppose n ∈ N, µ ⊢ n, and q is a prime power. Then T □
µ (q) is a

union of conjugacy classes, each with cardinality
γn(q)∏ℓ(µ)

i=1 (qµi − 1)
.

Therefore,

#T □
µ (q) = γn(q)∏ℓ(µ)

i=1 (qµi − 1)
·
∏
i⩾1

(
#Fi(q)
mi(µ)

)
.

Recall that Corollary 1.2 states that, for large q, the set T □
µ (q) comprises approx-

imately 1/zµ of GLn Fq. We now show how it follows from Corollary 2.16.

Proof of Corollary 1.2. First, we prove the regular semisimple portion of the claim.
By Corollary 2.16 and the fact that γn(q) = # GLn Fq for prime powers q,

(35)
#T □

µ (q)
# GLn Fq

=
∏

i⩾1
(#Fi(q)

mi(µ)
)

∏ℓ(µ)
i=1 qµi − 1

.

For each i ⩾ 1,

(36)
(

#Fi(q)
mi(µ)

)
is a polynomial in q with degree i · mi(µ) with leading coefficient 1/imi(µ)mi(µ)!.
Therefore, the numerator of the right side of (35) is a degree-|µ| polynomial in q
with leading coefficient 1/zµ. The denominator of the right side of (35) is a degree-|µ|
polynomial in q with leading coefficient 1. The result follows from taking the q → ∞
limit of (35).

Second, we prove the remaining claim using what we have already proved. Observe
that #T □

µ (q) ⩽ #Tµ(q) implies

(37) 1
zµ

= lim
q→∞

#T □
µ (q)

# GLn Fq
⩽ lim

q→∞

#Tµ(q)
# GLn Fq

for each µ ⊢ n. However,

(38)
∑
µ⊢n

1
zµ

= 1 =
∑
µ⊢n

#Tµ(q)
# GLn Fq

,

because cycle type partitions GLn Fq. This implies that the limit

(39) lim
q→∞

#Tµ(q)
# GLn Fq

cannot exceed 1/zµ, as desired. □
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In addition to Theorem 2.12, we will make use of the following characterization
of regular semisimple elements, which appears as the final corollary in [4, Section 3].
Recall that a matrix g ∈ GLn Fq is said to stabilize a subspace U ⊂ V if g(u) ∈ U for
all u ∈ U . Recall also that the lattice of stable subspaces of a matrix g ∈ GLn Fq

is the set of subspaces U ⊂ V that g stabilizes, ordered by inclusion.

Theorem 2.17 (Brickman–Fillmore [4]). For all n ∈ N and prime powers q, a matrix
g ∈ GLn Fq is regular semisimple if and only if the lattice of stable subspaces of g is
a Boolean lattice.

Next, we discuss another special class of matrices in GLn Fq, the regular elliptic
elements. Recall from the introduction that we have defined a matrix g ∈ GLn Fq to
be regular elliptic if its characteristic polynomial is irreducible. Equivalently, the set
of regular elliptic elements in GLn Fq is T(n)(q) = T □

(n)(q). This is just one of several
characterizations of regular elliptic elements that we will find useful.

Proposition 2.18 ([22, Proposition 4.4]). For all n ∈ N and prime powers q, the
following are equivalent for an element g ∈ GLn Fq.

(i) The element g is regular elliptic.
(ii) For all x ∈ GLn Fq, xgx−1 ∈ Pν =⇒ ν = (n), where Pν is defined by (42)

in Section 3.1 below.
(iii) The element g stabilizes no proper nontrivial subspaces of V .
(iv) The element g determines the isomorphism

(40) Vg
∼= Fq[z]/(h1(z)),

where h1 ∈ Fn(q) is the characteristic polynomial of g.

Finally, we combine the results about regular semisimple and regular elliptic el-
ements. The next result, which classifies the possible stable subspaces of a regular
semisimple element, will be central in proving our main tool, Theorem 1.7.

Corollary 2.19 (to Theorem 2.17 and Proposition 2.18). Suppose n ∈ N, q is a
prime power, and g ∈ GLn Fq is a regular semisimple element which determines the
isomorphism

(41) Vg
∼= Fq[z]/(h1(z)) ⊕ · · · ⊕ Fq[z]/(hℓ(z))

as in (32), where h1, . . . , hℓ ∈ F(q) are distinct and irreducible. Suppose g stabilizes
a subspace U ⊂ V . Let Ũ ⊂

⊕ℓ
i=1 Fq[z]/(hi(z)) denote the submodule corresponding

to U under the isomorphism (41). Then there exists a subset I ⊂ {1, . . . , ℓ} such that
Ũ =

⊕
i∈I Fq[z]/(hi(z)).

Proof. By Theorem 2.17, it suffices to show that, for each i ∈ {1, . . . , ℓ}, g stabi-
lizes no proper nontrivial subspace of Fq[z]/(hi(z)). Consider the restriction of g to
Fq[z]/(hi(z)). Since each hi is irreducible, the restriction of g to Fq[z]/(hi(z)) is regular
elliptic. By Proposition 2.18, we are done. □

3. GLn Fq character theory
In this section, we describe how to compute the values of all the irreducible char-
acters of GLn Fq. Just as with the symmetric groups, we will index the irreducible
characters of GLn Fq in the same way that we have indexed its conjugacy classes. The
following is a condensed review of the topic, based on Green’s work [15]. The notation
and language we use vary from Green’s original choices. For another exposition see
Macdonald [23, Chapter IV].
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3.1. Computing the irreducible GLn Fq characters. We first introduce more
notation. For each positive integer d, define αd : dZ → Z by αd(m) = [m/d]qd . Given
a polynomial f ∈ F(q), we will consider the function ℓf · αdeg f , which is obtained by
scaling αdeg f by the integer ℓf .

We require a process called parabolic induction, which we describe now. If ν =
(ν1, . . . , νℓ) ⊢ n, let Pν denote the parabolic subgroup of GLn Fq consisting of
block upper-triangular matrices with block sizes ν1, . . . , νℓ. Explicitly,

(42) Pν =




A11 A12 · · · A1ℓ

0 A22 · · · A2ℓ

0 0
. . .

...
0 0 0 Aℓℓ

 ∈ GLn Fq : Aii ∈ GLνi Fq for all 1 ⩽ i ⩽ ℓ

 .

For each i ∈ {1, . . . , ℓ}, let πν
i : Pν → GLνi Fq denote projection onto the ith diagonal

block:

(43) A =


A11 A12 · · · A1ℓ

0 A22 · · · A2ℓ

0 0
. . .

...
0 0 0 Aℓℓ

 ∈ Pν =⇒ πν
i (A) = Aii.

Given arbitrary characters χi of GLνi
Fq for each i ∈ {1, . . . , ℓ}, we define their

parabolic induction product
⊙ℓ

i=1 χi, which is a character of GLn Fq, by

(44)
(

ℓ⊙
i=1

χi

)
(g) = 1

#Pν

∑
x∈GLn Fq

xgx−1∈Pν

ℓ∏
i=1

χi

(
πν

i (xgx−1)
)

.

We now define the irreducible characters of GLn Fq in four steps. First, we define
the Primary-support characters, P . Second, we define the paraBolic characters,
B, in terms of the P ’s. Third, we define the Jrreducible characters, J , in terms of the
B’s. Finally, we define the irreducible characters χλ of GLn Fq in terms of the J ’s.(1)

The names Primary-support, paraBolic, and Jrreducible were not used by Green.
For each b ∈ Z and d ∈ N, we define the Primary-support character, P b

d , of GLd Fq

as follows:

(45) P b
d (g) =


ℓ(µ)−1∏

i=1
(1 − ti)

 ·
deg h∑
i=1

θ(ϵℓh

deg h)qib if λg = h 7→ µ is primary,

0 otherwise.

For each d ∈ Z, each ν ∈ Par ∖ {∅} such that d divides every part of ν, and each
function α : dZ → Z, we define the paraBolic character, Bα

ν , of GL|ν| Fq by

(46) Bα
ν =

ℓ(ν)⊙
i=1

P α(νi)
νi

.

For each f ∈ F(q) and λ ∈ Par, we define the Jrreducible character, Jλ
f , of

GL|λ|·deg f Fq by

(47) Jλ
f = (−1)|λ|·(deg f−1) ·

∑
ν⊢|λ|

1
zν

· χλ
ν · B

ℓf ·αdeg f

(deg f)ν .

(1)One might refer to this as the ‘PBJ’ method.
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Finally, for each index λ : F(q) → Par satisfying ∥λ∥ = n, we define the irreducible
character χλ of GLn Fq by

(48) χλ =
⊙

f∈supp λ

J
λ(f)
f .

Theorem 3.1 (Green [15, Theorem 14]). For all n ∈ N and prime powers q, the set
{χλ : ∥λ∥ = n} is the set of distinct, irreducible, complex characters of GLn Fq.

Green also showed that ⊙ is commutative and associative, so it makes sense to use
an arbitrary finite indexing set for the parabolic induction product. In fact, letting
J∅

f denote the empty function, which is the identity element with respect to ⊙, we
can define
(49) χλ =

⊙
f∈F(q)

J
λ(f)
f .

Note that we have indexed the irreducible characters in the same way that we
indexed the conjugacy classes. Moreover, we also refer to an irreducible character as
primary if its index is primary, and we use the usual f 7→ λ notation for its index.
Thus, primary characters are those of the form χf 7→λ for some f ∈ F(q) and
λ ∈ Par.
Example 3.2. Using the notation from Example 2.10, we record in Table 3 the char-
acter table for GL3 F2. Our choice of ϵ was made such that f3(ϵ3) = 0. The rows
correspond to the characters, and the columns correspond to the conjugacy classes.
In the row labels, we write, for instance, f1 7→ (2, 1) instead of χf1 7→(2,1) for simplicity.

Table 3. The character table of GL3 F2, where ζ7 = e2πi/7

U1 U2 U3 E Ẽ Co

f1 7→ (1, 1, 1) 8 0 0 1 1 −1
f1 7→ (2, 1) 6 2 0 −1 −1 0
f1 7→ (3) 1 1 1 1 1 1
f3 7→ (1) 3 −1 1 ζ7 + ζ2

7 + ζ4
7 ζ3

7 + ζ5
7 + ζ6

7 0
f̃3 7→ (1) 3 −1 1 ζ3

7 + ζ5
7 + ζ6

7 ζ7 + ζ2
7 + ζ4

7 0
λ o 7 −1 −1 0 0 1

3.2. Degrees of the irreducible GLn Fq characters. Green also gave an ex-
plicit formula for the degrees of the irreducible characters χλ. For any partition λ, let
b(λ) =

∑ℓ(λ)
i=1 (i − 1)λi and define

(50) [λ : q] = qb(λ) ·
∏

1⩽i<j⩽ℓ(λ)
(
q(λi−λj)−(i−j) − 1

)∏ℓ(λ)
i=1

∏λi+ℓ(λ)−i
j=1 (qj − 1)

.

Theorem 3.3 (Green [15, Theorem 14]). For all n ∈ N, prime powers q, and λ :
F(q) → Par with ∥λ∥ = n, the degree of the irreducible character χλ of GLn Fq is
given by

(51) deg χλ = (q − 1)n · [n]q! ·
∏

f∈F(q)

[
λ(f) : qdeg f

]
.

Example 3.4. We use Theorem 3.3 to calculate deg χf1 7→(2,1). By Theorem 3.3,

deg χf1 7→(2,1) = [3]2! · [(2, 1) : 2] = [3]2! · 6∏3
j=1(2j − 1) ·

∏1
k=1(2k − 1)

= 6,

which agrees with χf 7→(2,1) evaluated at U1 as recorded in Table 3.
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The degrees of primary characters indexed by z−1 7→ λ for λ ⊢ n have an alternate,
combinatorial description, which we mention briefly. Recall that, for a standard
Young tableau T of shape λ, the major index of T is defined as the sum of all
entries i in T for which i + 1 appears in a lower row of T than i. Furthermore, the
major index of T is denoted maj T . Recall also that, given a cell a in row i and
columns j of the Ferrers diagram of λ, denoted a ∈ λ, the hooklength of a is defined
by h(a) = (λi − i) + (λ′

j − j) + 1.

Theorem 3.5 (Stanley [29], Steinberg [31]). For all n ∈ N, λ ⊢ n, and prime powers q,
we have

(52) deg χz−1 7→λ = qb(λ) ·
∏n

i=1 qi − 1∏
a∈λ qh(a) − 1

=
∑

T

qmaj T ,

where the sum ranges over all standard Young tableaux T of shape λ.

3.3. Certain character values. Regular semisimple elements have many nice
properties. The following theorem, which follows from Steinberg’s work, describes
one such property.

Theorem 3.6 (Steinberg [31]). For all n ∈ N, prime powers q, partitions λ, µ ⊢ n,
and g ∈ T □

µ (q), we have χz−1 7→λ(g) = χλ
µ.

Regular elliptic elements, in particular, have nice character-theoretic properties as
well. The following result echoes Corollary 2.3.

Corollary 3.7 (to Corollary 2.3, Proposition 2.18, Theorem 3.1, and Theorem 3.3).
Suppose n ∈ N, q is a prime power, λ : F(q) → Par with ∥λ∥ = n, and g ∈ T(n)(q).
If χλ(g) ̸= 0, then there exist d | n, f ∈ Fd(q), and r ∈ {0, . . . , n/d − 1} such that
λ = f 7→ (n/d − r, 1r) is primary. Moreover,

(53) deg χf 7→(n/d−r,1r) = degn,d,r(q),

as defined in Table 1.

It follows that, when using the Frobenius formula to enumerate factorizations in-
volving regular elliptic elements, one only needs to consider characters of the form
χf 7→(n/d−r,1r). Therefore, when n is understood from context, and for any d | n,
f ∈ Fd(q), and r ∈ {0, . . . , n/d − 1}, we define

(54) χf,r = χf 7→(n/d−r,1r).

We can now write down a further simplified version of (19).

Corollary 3.8 (to Corollary 2.2 and Corollary 3.7). For all n, k ∈ N, µ ⊢ n, and
prime powers q, we have

(55) gk,µ(q) = 1
γn(q)

∑
d,f,r

degn,d,r(q)1−k

 ∑
g∈T(n)(q)

χf,r(g)

k ∑
h∈Tµ(q)

χf,r(h)

 ,

where the sum is over all d dividing n, f ∈ Fd(q), and r ∈ {0, . . . , n/d−1}. Moreover,
the same is true when both gk,µ(q) is replaced with g□

k,µ(q) and Tµ(q) is replaced
with T □

µ (q).
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4. Proofs of main results
4.1. Main tool. We begin with our main tool, Theorem 1.7, a result that allows us
to evaluate primary characters on regular semisimple elements more easily. We present
some lemmas before giving the proof. In the preliminary lemmas and in Theorem 1.7,
the hypotheses include “µ ⊢ n and g ∈ T □

µ (q).” In all the proofs, we will assume g is in
rational canonical form and denote the distinct irreducible factors of the characteristic
polynomial of g by h1, . . . , hℓ(µ) with deg hi = µi for each i ∈ {1, . . . , ℓ(µ)}. Note that
this implies each diagonal block πµ

i (g) ∈ GLµi
(q) is in the primary conjugacy class

indexed by hi 7→ □.

Lemma 4.1. For all n ∈ N, d | n, ν ⊢ n/d, µ ⊢ n, prime powers q, g ∈ T □
µ (q), and

α : dZ → Z, we have Bα
dν(g) = 0 unless dν = µ.

Proof. By definition,

(56) Bα
dν(g) = 1

#Pdν

∑
x∈GLn Fq

xgx−1∈Pdν

ℓ(ν)∏
i=1

P
α(dνi)
dνi

(
πdν

i (xgx−1)
)

.

Consider a single summand in (56), which is a product of Primary-support character
values. By definition, the Primary-support characters vanish away from primary con-
jugacy classes. Thus, the product of them vanishes if any diagonal block of xgx−1 is
not primary. So assume the product of the P characters in (56) does not vanish, and
hence each block πdν

i (xgx−1) is primary.
For each i ∈ {1, . . . , ℓ(ν)}, let h̃i be the characteristic polynomial of πdν

i (xgx−1).
Since xgx−1 ∈ Pdν has a block-upper-triangular structure, its characteristic polyno-
mial equals

∏ℓ(ν)
i=1 h̃i. The fact that each πdν

i (xgx−1) is primary implies that each h̃i

is a power ρai
i of an irreducible polynomial ρi ∈ F(q). On the other hand, g is regular

semisimple, meaning its characteristic polynomial has no repeated factors. Thus, each
ai = 1 and there exists a permutation σ ∈ Sℓ(µ) such that ρi = h̃i = hσ(i) for all
i ∈ {1, . . . , ℓ(µ)}. Computing degrees show that dνi = deg h̃i = deg hσ(i) = µσ(i) for
all i ∈ {1, . . . , ℓ(µ)}. This implies dν = µ. □

We require some more terminology before moving forward. Given µ ⊢ n, refer to a
flag S• of nested subspaces

S1 ⊂ S2 ⊂ · · · ⊂ Sℓ(µ)

of V as a µ-flag if

dim Sj =
j∑

i=1
µi

for all j ∈ {1, . . . , ℓ(µ)}. Refer to an ordered basis (e1, . . . , en) of V as a basis for S•
if (

e1, . . . , e∑j

i=1
µi

)
is a basis for Sj for each j ∈ {1, . . . , ℓ(µ)}. Conversely, each ordered basis (e1, . . . , en)
for V determines a µ-flag by taking the jth subspace in the flag to be the span of(

e1, . . . , e∑j

i=1
µi

)
for each j ∈ {1, . . . , ℓ(µ)}. Given a µ-flag S•, say that a matrix in

GLn Fq stabilizes S• if it stabilizes Sj for each j ∈ {1, . . . , ℓ(µ)}.

Lemma 4.2. For all n ∈ N, µ ⊢ n, prime powers q, and g ∈ T □
µ (q), we have

(57) #
{

x ∈ GLn Fq : xgx−1 ∈ Pµ

}
= #Pµ ·

∏
i⩾1

mi(µ)!.
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Proof. Viewing g abstractly as a linear transformation on V , the left side of (57) is
the number of ordered bases of V with respect to which the matrix representing g is
an element of Pµ. For any fixed basis B = (v1, . . . , vn) for V , being an element of Pµ

is equivalent to stabilizing the µ-flag determined by B. Therefore, the left side of (57)
is the product of

(1) the number of µ-flags that g stabilizes and
(2) the number of ordered bases for a given µ-flag.

The second part is #Pµ.
For the first part, consider a µ-flag

S• = S1 ⊂ S2 ⊂ · · · ⊂ Sℓ(µ)

that g stabilizes. For each i ∈ {1, . . . , ℓ(µ)}, let Qi denote the quotient Si/Si−1,
with the convention that S0 is zero-dimensional. Note that dim Qi = µi. Under the
isomorphism (32), let Ei ⊂ V denote the subspace corresponding to Fq[z]/(hi(z)) for
each i ∈ {1, . . . , ℓ(µ)}. By Corollary 2.19, the only subspaces of V that g stabilizes are
direct sums of the Ei’s. Therefore, each Sj is a direct sum of the Ei’s. This implies
each Qi is also a direct sum of the Ei’s. Working backwards from Qℓ(µ) to Q1, we see
that Qℓ(µ)−m1(µ)+1, . . . , Qℓ(µ) are all 1-dimensional and thus form a permutation of
the m1(µ) subspaces Eℓ(µ)−m1(µ)+1, . . . , Eℓ(µ). Likewise,

Qℓ(µ)−m1(µ)−m2(µ)+1, . . . , Qℓ(µ)−m1(µ)

are all 2-dimensional and thus form a permutation of the m2(µ) subspaces
Eℓ(µ)−m1(µ)−m2(µ)+1, . . . , Eℓ(µ)−m1(µ),

as there are no 1-dimensional Ei’s remaining. Continuing in this fashion, we see that
the sequence (Q1, . . . , Qℓ(µ)) of quotients is one of

∏
i⩾1 mi(µ)! total possibilities.

Since the quotients determine S• uniquely, the result follows. □

We are now ready to prove Theorem 1.7. For d | n, f ∈ Fd(q), and λ ⊢ n/d, it
states that, if some part of µ is not divisible by d, then χf 7→λ(g) = 0, and otherwise,
there exists µ̃ ⊢ n/d such that µ = dµ̃, and we have

(58) χf 7→λ(g) = (−1)
n
d (d−1)χλ

µ̃

ℓ(µ)∏
i=1

1
µ̃i

∑
βi∈Fqµi

hi(βi)=0

θ(βi)ℓf ·[µ̃i]
qd .

Proof of Theorem 1.7. By definitions (47) and (48), we have

(59) χf 7→λ(g) = Jλ
f (g) = (−1)

n
d (d−1) ·

∑
ν⊢ n

d

χλ
ν

zν
B

ℓf ·αd

dν (g).

By Lemma 4.1, B
ℓf ·αd

dν (g) = 0 unless dν = µ. If some part of µ is not divisible by d,
then χf 7→λ(g) = 0, proving the first statement in the lemma. Otherwise, there exists
a unique partition µ̃ ⊢ n/d such that µ = dµ̃, and only the summand corresponding
to µ̃ in (59) does not vanish. In this case, (59) reduces to

(60) χf 7→λ(g) = (−1) n
d (d−1) χλ

µ̃

zµ̃
B

ℓf ·αd
µ (g).

By definitions (44) and (46), we can rewrite (60) as

(61) χf 7→λ(g) = (−1)
n
d (d−1) ·

χλ
µ̃

zµ̃
· 1

#Pµ

∑
x∈GLn Fq

xgx−1∈Pµ

ℓ(µ)∏
i=1

P
ℓf ·αd(µi)
µi (πµ

i (xgx−1)).
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Consider the summation in (61). It can be rewritten as

(62)
∑

x∈GLn Fq

xgx−1∈Pµ

∏
s⩾1

∏
{j∈N : µj=s}

P
ℓf ·αd(s)
s (πµ

j (xgx−1)).

For each x such that xgx−1 ∈ Pµ, consider the corresponding summand in (62).
We repeat a similar argument to the one presented toward the end of the proof of
Lemma 4.2. Note that the characteristic polynomials of {πµ

j (xgx−1) : j ∈ N, µj = 1}
have degree 1 and hence are a permutation of {hj : j ∈ N, µj = 1}. Likewise, the
characteristic polynomials of {πµ

j (xgx−1) : j ∈ N, µj = 2} have degree 2 and hence
are a permutation of {hj : j ∈ N, µj = 2}, as there are no degree-1 factors remaining.
Continuing, we see that, for each s ∈ N, the degree-s characteristic polynomials of the
diagonal blocks of xgx−1 are a permutation of the degree-s irreducible factors of the
characteristic polynomial of g. Moreover, the value of each P

ℓf ·αd(s)
s in (62) depends

only on the characteristic polynomial of the argument. This implies that the product
of the Primary-support characters in (62) is constant over the sum. Therefore,
(63)

χf 7→λ(g) = (−1)
n
d (d−1) ·

χλ
µ̃

zµ̃
· #{x ∈ GLn Fq : xyx−1 ∈ Pµ}

#Pµ
·

ℓ(µ)∏
i=1

P
ℓf ·αd(µi)
µi (πµ

i (g)).

By Lemma 4.2, (63) reduces to

(64) χf 7→λ(g) = (−1)
n
d (d−1) · χλ

µ̃ ·
ℓ(µ)∏
i=1

1
µ̃i

P
ℓf ·αd(µi)
µi (πµ

i (g)).

Consider the Primary-support character evaluations in (64). By (24) and definition
(45),

P
ℓf ·αd(µi)
µi (πµ

i (g)) =
µi∑

j=1
θ(ϵℓhi

µi )qjℓf ·[µ̃i]
qd =

∑
βi∈Fqµi

hi(βi)=0

θ(βi)ℓf ·[µ̃i]
qd .(65)

Substituting (65) into (64) gives the result. □

Example 4.3. Returning to Example 3.2, we compute χf3 7→(1)(c) for c ∈ E. In the
notation of Theorem 1.7, we have d = 3, f = f3, λ = (1), µ = (3), µ̃ = (1), h1 = f3,
and ℓf = 1. The roots of h1 are ϵ3, ϵ2

3, and ϵ4
3. By Theorem 1.7,

χf3 7→(1)(c) = (−1) 3
3 (3−1) · χ

(1)
(1) ·

∑
h1(β)=0

θ(β)

= θ(ϵ3) + θ(ϵ2
3) + θ(ϵ4

3) = ζ7 + ζ2
7 + ζ4

7 .

We see this exact value in Table 3 above.

4.2. Proof of first main result. We can now apply Theorem 1.7 to prove our
main results. We begin with Theorem 1.3, which addresses the family of cases where
µ ⊢ n > 2 and m1(µ) = 1. Recall that Theorem 1.3 states, under these assumptions
on µ and n,

(66) g□
k,µ(q) =

#T(n)(q)k · #T □
µ (q)

# GLn Fq
·

n−1∑
r=0

(−1)rkχ
(n−r,1r)
µ(

q(r+1
2 ) ·

[
n−1

r

]
q

)k−1

for all k ∈ N and prime powers q.
In the rest of this section and later, we will require some additional notation. We

will consider the logical propositions “q − 1 | ℓf ” for various f ∈ F1(q). Even though
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ℓf denotes an arbitrary choice, these propositions are well-defined for the following
reason. For any two possible choices ℓf and ℓ′

f , there exist i, j ∈ Z such that

(67) ℓ′
f = qiℓf + j(q − 1),

so q − 1 | ℓf if and only if q − 1 | ℓ′
f .

Proof of Theorem 1.3. By Corollary 3.8, we have

g□
k,µ(q) = 1

γn(q)
∑
d|n

n
d −1∑
r=0

degn,d,r(q)1−k
∑

f∈Fd(q)

 ∑
g∈T(n)(q)

χf,r(g)

k ∑
h∈T □

µ (q)

χf,r(h)

 .

Applying Theorem 1.7, we see that χf,r vanishes on T □
µ (q) unless d = 1. Therefore,

(68)

g□
k,µ(q) = 1

γn(q)

n−1∑
r=0

degn,1,r(q)1−k
∑

f∈F1(q)

 ∑
g∈T(n)(q)

χf,r(g)

k ∑
h∈T □

µ (q)

χf,r(h)

 .

We proceed to show that only the f(z) = z − 1 term does not vanish in the
sum over f ∈ F1(q). Consider an individual polynomial f ∈ F1(q). Recall from
Section 2.4.1 that the conjugacy classes in T □

µ (q) have equal sizes and each conjugacy
class is uniquely determined by a set {h1, . . . , hℓ} of distinct polynomials such that
hi ∈ Fµi

(q) for each i ∈ {1, . . . , ℓ}. Thus, by Theorem 1.7,
∑

h∈T □
µ (q) χf,r(h) is a

multiple of

(69)
∑

{h1,...,hℓ}
hi∈Fµi

(q)

ℓ∏
i=1

∑
βi∈Fqµi

hi(βi)=0

θ(βi)ℓf ·[µi]q .

Since m1(µ) = 1, we have that (69) factors as

(70)

 ∑
{h1,...,hℓ−1}

hi∈Fµi
(q)

ℓ−1∏
i=1

∑
βi∈Fqµi

hi(βi)=0

θ(βi)ℓf ·[µi]q

 ·

 ∑
hℓ∈F1(q)

∑
βℓ∈Fq

hℓ(βℓ)=0

θ(βℓ)ℓf

 .

The latter factor in (70) is∑
hℓ∈F1(q)

∑
βℓ∈Fq

hℓ(βℓ)=0

θ(βℓ)ℓf =
{

0, q − 1 ∤ ℓf ,

q − 1, q − 1 | ℓf ,

because, by Corollary 2.6, θ(βℓ) ranges over all (q − 1)th roots of unity. Since deg f =
d = 1, we can take ℓf ∈ {1, . . . , q − 1}. Thus, the only non-zero contribution to the
sum over f ∈ F1(q) in (68) comes from the term corresponding to ℓf = q − 1 and
hence f(z) = z − 1.

Eliminating the vanishing terms not corresponding to f(z) = z − 1 in (68) gives

g□
k,µ(q) = 1

γn(q)

n−1∑
r=0

degn,1,r(q)1−k

 ∑
g∈T(n)(q)

χz−1,r(g)

k ∑
h∈T □

µ (q)

χz−1,r(h)

 .

By Corollary 2.3 and Theorem 3.6,
g ∈ T(n)(q) =⇒ χz−1,r(g) = (−1)r and

h ∈ T □
µ (q) =⇒ χz−1,r(h) = χ(n−r,1r)

µ .
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Since both character values only depend on r, we have

g□
k,µ(q) = 1

γn(q)

n−1∑
r=0

degn,1,r(q)1−k ·
(
#T(n)(q)(−1)r

)k ·
(

#T □
µ (q)χ(n−r,1r)

µ

)
,

which simplifies to the result, using the notation from Table 1. □

Next is the case of µ = (n − 1, 1), which is addressed by Corollary 1.4. In this
case, gk,(n−1,1)(q) equals the number of k-tuples of regular elliptic elements whose
product has exactly one eigenvalue in Fq and acts as a regular elliptic element on an
(n − 1)-dimensional subspace of V . Recall that Corollary 1.4 states that

(71) gk,(n−1,1)(q) =
#T(n)(q)k · #T(n−1,1)(q)

# GLn Fq
·

(
1 + (−1)nk−n−k

q(n
2)(k−1)

)

for all n > 2, k ∈ N, and prime powers q.

Proof of Corollary 1.4. Apply Corollary 2.3 to Theorem 1.3, observing that χ
(n−r,1r)
(n−1,1)

is only nonzero when r ∈ {0, n − 1}. □

4.3. Proof of second main result. Our second main result, Theorem 1.5, ad-
dresses the case µ = (n). In this case, the quantity gk,(n)(q) equals the number of
k-tuples of regular elliptic elements whose product is also regular elliptic. Recall the
notation and definitions from Table 1, and recall that Theorem 1.5 states that

(72) gk,(n)(q) = Pn,k+1(q)
∑
d|n

(−1)n(k+1)/ddkDn,k+1,d(q)
∑
c|d

µµµ(d/c)Cn,k+1,c(q)

for all n, k ∈ N and prime powers q.

Proof of Theorem 1.5. By Corollary 3.8 and the fact that µ = (n), we have

(73) gk,µ(q) = 1
γn(q)

∑
d|n

n
d −1∑
r=0

degn,d,r(q)1−k
∑

f∈Fd(q)

 ∑
g∈T(n)(q)

χf,r(g)

k+1

.

By Theorem 2.9, the size of each conjugacy class comprising T(n)(q) is γn(q)/(qn −1).
Since characters are constant on conjugacy classes, we have

(74)
∑

g∈T(n)(q)

χf,r(g) = γn(q)
qn − 1

∑
p∈Fn(q)

χf,r(gp),

where gp denotes an arbitrary regular elliptic element with characteristic polynomial
p. Substituting (74) into (73), we have
(75)

gk,µ(q) = 1
γn(q)

(
γn(q)
qn − 1

)k+1∑
d|n

n
d −1∑
r=0

degn,d,r(q)1−k
∑

f∈Fd(q)

 ∑
p∈Fn(q)

χf,r(gp)

k+1

.
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Observe that T(n)(q) = T □
(n)(q), so we can evaluate primary characters on T(n)(q) using

Theorem 1.7. Applying Theorem 1.7 and Corollary 2.3 to (75) gives

gk,µ(q) = 1
γn(q)

(
(−1)nγn(q)
n(qn − 1)

)k+1∑
d|n

((−1)n/dd)k+1

n
d −1∑
r=0

(−1)r(k+1) degn,d,r(q)1−k

×
∑

f∈Fd(q)

 ∑
p∈Fn(q)

∑
α∈F×

qn

p(α)=0

θ(α)ℓf ·[n/d]
qd


k+1

.

Using the notation established in Table 1, this is equivalent to
(76)

gk,µ(q)
Pn,k+1(q) =

∑
d|n

((−1)n/dd)k+1Dn,k+1,d(q)
∑

f∈Fd(q)

 ∑
p∈Fn(q)

∑
α∈F×

qn

p(α)=0

θ(α)ℓf ·[n/d]
qd


k+1

.

Theorem 1.5 now follows from Corollary 4.4 below, which we phrase in terms of k
rather than k + 1 for the sake of simplifying the expressions. □

Corollary 4.4 (to Lemma 4.5 and Lemma 4.6). For all n, k ∈ N, d | n, and prime
powers q,

∑
f∈Fd(q)

 ∑
p∈Fn(q)

∑
α∈F×

qn

p(α)=0

θ(α)ℓf ·[n/d]
qd


k

= 1
d

∑
c|d

µµµ(d/c)Cn,k,c(q).

Before proving Corollary 4.4, we prove two lemmas. Given a logical proposition
P, let δP equal 1 if P is true and 0 if P is false. We will make logical propositions
of the form “b | ℓf · [n/d]qd” or equivalently “b divides ℓf · [n/d]qd”, where d | n,
f ∈ Fd(q), and b is a number that divides qn − 1. These are not of the same form
as “q − 1 | ℓf ,” which we considered earlier. However, they are still well-defined for
the following reason. First, b dividing an element of Z/(qn − 1) is well-defined simply
because b itself divides qn − 1. Second, for any two possible choices ℓf and ℓ′

f with
deg f = d, there exist i, j ∈ Z such that

(77) ℓ′
f = qiℓf + j(qd − 1)

and thus

(78) ℓ′
f · [n/d]qd = qiℓf · [n/d]qd + j(qn − 1)

from multiplying both sides by [n/d]qd . It follows that, for any b | qn − 1, we have
b | ℓf · [n/d]qd if and only if b | ℓ′

f · [n/d]qd .

Lemma 4.5. For all n ∈ N, d | n, prime powers q, and f ∈ Fd(q),

(79)
∑

p∈Fn(q)

∑
α∈F×

qn

p(α)=0

θ(α)ℓf ·[n/d]
qd =

∑
s|n

µµµ(n/s)(qs − 1)δqs−1|ℓf ·[n/d]
qd

.
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Proof. By Möbius inversion, it suffices to prove

(80)
∑
s|n

∑
p∈Fs(q)

∑
α∈F×

qs

p(α)=0

θ(α)ℓf ·[n/d]
qd = (qn − 1)δqn−1|ℓf ·[n/d]

qd
.

Corollary 2.5 implies that, on the left side of (80), θ(α) ranges precisely over all
(qn − 1)th roots of unity. The sum of the (ℓf · [n/d]qd)th powers of all (qn − 1)th roots
of unity is zero unless qn − 1 divides ℓf · [n/d]qd , in which case the sum is qn − 1. □

Lemma 4.6. For all n ∈ N, d | n, prime powers q, and b | qn − 1,

(81) #{f ∈ Fd(q) : b | ℓf · [n/d]qd} = 1
d

∑
c|d

µµµ(d/c) qn − 1
lcm

(
[n/c]qc , b

)
Proof. By Möbius inversion, it suffices to prove

(82)
∑
c|d

c · #{f ∈ Fc(q) : b | ℓf · [n/c]qc} = qn − 1
lcm

(
[n/d]qd , b

) .

View each value ℓf · [n/c]qc as an element of Z/(qn − 1), as in the context of Corol-
lary 2.6. Modulo qn−1, there are exactly c distinct choices for each ℓf ·[n/c]qc . Namely,
given a choice for ℓf ,

ℓf , qℓf , q2ℓf , . . . , qc−1ℓf mod qn − 1

are also valid choices for ℓf , and so

ℓf · [n/c]qc , qℓf · [n/c]qc , q2ℓf · [n/c]qc , . . . , qc−1ℓf · [n/c]qc mod qn − 1

are all the possible choices for ℓf · [n/c]qc in Z/(qn − 1). Recalling definition (25),
we see that those values are precisely the images under θn of the roots of f . Thus,
another way to interpret the sum on the left side of (82) is∑

c|d

∑
f∈Fc(q)

∑
α∈Fqc

f(α)=0

δb|θn(α).

Therefore, by Corollary 2.6, the left side of (82) counts the elements of Z/(qn − 1)
that are divisible by both [n/d]qd and b, which is exactly the right side of (82). □

Proof of Corollary 4.4. Using Lemma 4.5 and expanding the kth power in the state-
ment, it remains to show∑

s1,...,sk|n

#{f ∈ Fd(q) : lcm(qs1 − 1, . . . , qsk − 1) | ℓf · [n/d]qd} ·
k∏

i=1
µµµ(n/si)(qsi − 1)

equals
1
d

∑
c|d

µµµ(d/c)Cn,k,c(q).

By the definition of Cn,k,c(q), this is equivalent to showing that

#{f ∈ Fd(q) : lcm(qs1 − 1, . . . , qsk − 1) | ℓf · [n/d]qd}

equals
1
d

∑
c|d

µµµ(d/c) qn − 1
lcm

(
[n/c]qc , qs1 − 1, . . . , qsk − 1

) .

This follows from Lemma 4.6. □
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5. Asymptotic result
5.1. Prerequisite lemmas. We require some lemmas before proving Theorem 1.8,
and we introduce more notation to do so. For a complex number α, let ᾱ denote the
complex conjugate of α, and let ∥α∥ =

√
αᾱ ∈ [0, ∞) denote the usual norm of α.

Define the function D : N → N ∪ {0} by

(83) D(n) =
{

0 if n = 1,

max{s ∈ N : s | n and s < n} if n > 1.

In other words, D(n) is the largest proper divisor of n, unless n = 1, and D(1) = 0.
Note that D(n) ⩽ n/2 for all n ∈ N. In this section, we also make use of big O
notation. Recall that if S is an infinite subset of N and f, g : S → [0, ∞), then
we write f = O(g) to denote that there exist m ∈ [0, ∞) and s0 ∈ S such that
f(s) ⩽ m ·g(s) for all s > s0. In other words, f is big O of g if some constant multiple
of g(s) is an upper bound on f(s) for all sufficiently large s ∈ S.

Remark 5.1. Our aim is to use big O statements to evaluate limits as q → ∞.
Therefore, in all expressions involving big O notation in this section, we will take
S to be the set of prime powers and use q to denote the argument of each relevant
function.

Lemma 5.2. For all n ∈ N, d | n, and r ∈ {0, . . . , n
d − 1}, we have

(84) 1
degn,d,r(q) = O

(
q−e(n,d,r)

)
,

where we define

(85) e(n, d, r) = d

(
r + 1

2

)
+
(

n + 1
2

)
− d

(n
d + 1

2

)
+ dr

(
n
d − 1 − r

)
.

Moreover, e(n, d, r) is positive unless d = 1 and r = 0, and e(n, 1, 0) = 0.

Proof. The first claim follows from the fact that degn,d,r is a rational function of q and
then checking the degrees in q of the various polynomials which comprise degn,d,r(q).
To prove the second claim, first observe that e(n, d, r) is a quadratic polynomial in r
with critical point r = n

d − 1
2 and leading coefficient −d/2. This implies e(n, d, r) is

increasing for r ∈ {0, . . . , n
d − 1}. The minimum value of e(n, d, r) on {0, . . . , n

d − 1}
is therefore achieved at r = 0. Observe that e(n, d, 0) = n

2
(
n − n

d

)
, which is positive

unless d = 1. Therefore, e(n, d, r) > 0 if d > 1. In the case d = 1, we have e(n, 1, r) =
− 1

2 r2 + (n − 1
2 )r, which is positive unless r = 0. The result follows. □

Lemma 5.3. For all n ∈ N, d | n, r ∈ {0, . . . , n/d − 1}, we have

(86) max
f∈Fd(q)

f(z)̸=z−1

∥∥∥∑g∈T(n)(q) χf,r(g)
∥∥∥

#T(n)(q) = O
(

qD(n)−n
)

.

Proof. Applying Theorem 1.7, Corollary 2.3, (34), Corollary 2.16, and Lemma 4.5,
we have

(87) 1
#T(n)(q)

∥∥∥∥∥∥
∑

g∈T(n)(q)

χf,r(g)

∥∥∥∥∥∥ =
d ·
∣∣∣∑s|n µµµ(n/s)(qs − 1)δqs−1|ℓf [n/d]

qd

∣∣∣∑
s|n µµµ(n/s)(qs − 1)

for all prime powers q and f ∈ Fd(q). The denominator on the right side of (87) is a
degree-n polynomial in q, independent of f . However, the numerator on the right side
of (87) is not necessarily a polynomial in q at all, as it also depends on ℓf which can
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vary with q, and the sum is inside of an absolute value. Fortunately, if qn − 1 does
not divide ℓf [n/d]qd , then

(88)

∣∣∣∣∣∣
∑
s|n

µµµ(n/s)(qs − 1)δqs−1|ℓf ·[n/d]
qd

∣∣∣∣∣∣ ⩽
∑
s|n
s<n

|µµµ(n/s)(qs − 1)|

⩽
∑
s|n
s<n

qs < 1 +
∑
s|n
s<n

qs.

Therefore, in this case

(89) 1
#T(n)(q)

∥∥∥∥∥∥
∑

g∈T(n)(q)

χf,r(g)

∥∥∥∥∥∥ ⩽ d ·
1 +

∑
s|n, s<n qs∑

s|n µµµ(n/s)(qs − 1) .

Observe that 1 +
∑

s|n, s<n qs is a degree-D(n) polynomial in q, and the right side of
(89) is independent of f . Moreover, the condition qn − 1 ∤ ℓf · [n/d]qd is equivalent to
f(z) ̸= z − 1 because

qn − 1 | ℓf · [n/d]qd ⇐⇒ qd − 1 | ℓf ⇐⇒ f(1) = 0 ⇐⇒ f(z) = z − 1.

The result now follows from computing the maximum of (89) over f ∈ Fd(q) ∖ {z − 1}.
□

Lemma 5.4. For all n ∈ N, µ ⊢ n, d | n, r ∈ {0, . . . , n
d − 1}, we have

(90) max
f∈Fd(q)

∥∥∥∑g∈T □
µ (q) χf,r(g)

∥∥∥
γn(q) = O(1).

Proof. Consider a fixed prime power q and polynomial f ∈ Fd(q) to begin. By
Theorem 1.7, if some part of µ is not divisible by d, then

∑
g∈T □

µ (q) χf,r(g) = 0,
which satisfies the claim. So assume there exists µ̃ ⊢ n/d such that µ = dµ̃. Re-
call that, by Theorem 2.12, the conjugacy classes in T □

µ (q) are in bijection with
subsets {h1, . . . , hℓ(µ)} ⊂ F(q) of distinct polynomials with deg hi = µi for each
i ∈ {1, . . . , ℓ(µ)}. By Theorem 1.7, Corollary 2.16, and the fact that characters are
constant on conjugacy classes, we have that

∑
g∈T □

µ (q) χf,r(g) equals

(91)
γn(q)(−1)

n
d (d−1)χ

(n/d−r,1r)
µ̃∏ℓ(µ)

i=1 (qµi − 1)

∑
{h1,...,hℓ(µ)}⊂F(q)

deg hi=µi∀i

ℓ(µ)∏
i=1

1
µ̃i

∑
αi∈Fqµi

hi(αi)=0

θ(αi)ℓf ·[µ̃i]
qd .

We can now separate the outer sum in (91) according to the degrees of the distinct
polynomials hi ∈ Fµi

(q). Doing so transforms (91) into
(92)
γn(q)(−1)

n
d (d−1)χ

(n/d−r,1r)
µ̃∏ℓ(µ)

i=1 (qµi − 1)

∏
s⩾1

(
d

s

)ms(µ) ∑
{p1,...,pms(µ)}⊂Fs(q)

ms(µ)∏
i=1

∑
βi∈Fqs

pi(βi)=0

θ(βi)ℓf ·[s/d]
qd .
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Computing the norm, applying the triangle inequality, recalling that θ maps into the
unit circle in C, and applying Corollary 2.16 gives∥∥∥∥∥∥

∑
g∈T □

µ (q)

χf,r(g)

∥∥∥∥∥∥
⩽

γn(q)
∣∣∣χ(n/d−r,1r)

µ̃

∣∣∣∏ℓ(µ)
i=1 (qµi − 1)

∏
s⩾1

(
d

s

)ms(µ) ∑
{p1,...,pms(µ)}⊂Fs(q)

ms(µ)∏
i=1

∑
βi∈Fqs

pi(βi)=0

∥∥∥θ(βi)ℓf ·[s/d]
qd

∥∥∥

=
γn(q)

∣∣∣χ(n/d−r,1r)
µ̃

∣∣∣∏ℓ(µ)
i=1 (qµi − 1)

∏
s⩾1

(
d

s

)ms(µ) ∑
{p1,...,pms(µ)}⊂Fs(q)

sms(µ)

=
γn(q)

∣∣∣χ(n/d−r,1r)
µ̃

∣∣∣∏ℓ(µ)
i=1 (qµi − 1)

d

∑
s⩾1

ms(µ) ∏
s⩾1

(
#Fs(q)
ms(µ)

)
= #T □

µ (q) ·
∣∣∣χ(n/d−r,1r)

µ̃

∣∣∣ · d ℓ(µ).

Thus,

(93) 1
γn(q)

∥∥∥∥∥∥
∑

g∈T □
µ (q)

χf,r(g)

∥∥∥∥∥∥ ⩽
#T □

µ (q)
γn(q) ·

∣∣∣χ(n/d−r,1r)
µ̃

∣∣∣ · d ℓ(µ).

The right side of (93) does not depend on f , which implies

(94) max
f∈Fd(q)

1
γn(q)

∥∥∥∥∥∥
∑

g∈T □
µ (q)

χf,r(g)

∥∥∥∥∥∥ ⩽
#T □

µ (q)
γn(q) ·

∣∣∣χ(n/d−r,1r)
µ̃

∣∣∣ · d ℓ(µ).

Moreover, by Corollary 1.2, for sufficiently large q, the right side of (94) is arbitrarily
close to the constant value |χ(n/d−r,1r)

µ̃ | · dℓ(µ)/zµ. The result follows. □

5.2. Proof of asymptotic result. Recall that we have defined

(95) pk,µ(q) = gk,µ(q)
#T(n)(q)k

and p□k,µ(q) =
g□

k,µ(q)
#T(n)(q)k

for all n, k ∈ N, k ⩾ 2, and µ ⊢ n. We can now prove our asymptotic result, Theo-
rem 1.8, which states

(96) lim
q→∞

pk,µ(q) = lim
q→∞

p□k,µ(q) = 1
zµ

.

Proof of Theorem 1.8. We will first prove that limq→∞ p□k,µ(q) = 1/zµ. From this, it
follows that limq→∞ pk,µ(q) = 1/zµ because, for all prime powers q, we have pk,ν(q) ⩾
p□k,ν(q) for all ν ⊢ n and

∑
ν⊢n pk,ν(q) = 1 =

∑
ν⊢n 1/zν .

Consider the following formulation of p□k,µ(q). By its definition (15) and by Corol-
lary 3.8, we have

(97) p□k,µ(q) =
∑
d|n

n
d −1∑
r=0

∑
f∈Fd(q)

(∑
g∈T(n)(q) χf,r(g)

#T(n)(q)

)k( ∑
h∈T □

µ (q) χf,r(h)
γn(q) · degn,d,r(q)k−1

)
.

We want to compute limq→∞ p□k,µ(q), but the index set for the summation over f ∈
Fd(q) in (97) itself depends on q. Therefore, for each d | n, r ∈ {0, . . . , n/d − 1}, and
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f ∈ Fd(q) we define

(98) Φk,µ,d,r(q) =
∑

f∈Fd(q)

(∑
g∈T(n)(q) χf,r(g)

#T(n)(q)

)k( ∑
h∈T □

µ (q) χf,r(h)
γn(q) · degn,d,r(q)k−1

)
so that

(99) p□k,µ(q) =
∑
d|n

n
d −1∑
r=0

Φk,µ,d,r(q),

where the number of terms in the summation is fixed, even as q varies. Theo-
rem 1.8 now follows from Lemma 5.5 below, which computes the limiting behavior of
Φk,µ,d,r(q) for each d | n and r ∈ {0, . . . , n/d − 1}. □

Lemma 5.5. For all n, k ∈ N, µ ⊢ n, d | n, and r ∈ {0, . . . , n/d − 1}, we have

(100) lim
q→∞

Φk,µ,d,r(q) =
{

0 if d > 1 or r > 0,

1/zµ if d = 1 and r = 0.

Proof. Consider first the case that d > 1 and r is arbitrary. Observe that ∥Φk,µ,d,r(q)∥
is bounded above by

(101) #Fd(q)
degn,d,r(q)k−1 · max

f∈Fd(q)


∥∥∥∑g∈T(n)(q) χf,r(g)

∥∥∥
#T(n)(q)

k

· max
f∈Fd(q)

∥∥∥∑h∈T □
µ (q) χf,r(h)

∥∥∥
γn(q)

for all prime powers q. We proceed to investigate the asymptotic dependence on q of
(101). Recall from (34) that #Fd(q) = O(qd). Combining this with Lemmas 5.2, 5.3,
and 5.4, we have

(102) ∥Φk,µ,d,r(q)∥ = O
(

qd+k(D(n)−n)−(k−1)·e(n,d,r)
)

.

By hypothesis, k ⩾ 2, implying d + k · (D(n) − n) ⩽ d − k · n/2 ⩽ 0. Moreover, by
Lemma 5.2, (k − 1) · e(n, d, r) > 0. It follows that limq→∞ Φk,µ,d,r(q) = 0 if d > 1.

Next, consider the case d = 1. Observing that z − 1 ∈ F1(q) for all prime powers
q and applying Theorem 3.6, we can rewrite Φk,µ,1,r(q) as

Φk,µ,1,r(q) =
#T □

µ

γn(q) · (−1)rkχ
(n−r,1r)
µ(

q(r+1
2 )[n−1

r

]
q

)k−1(103)

+
∑

f∈F1(q)
f(z) ̸=z−1

(∑
g∈T(n)(q) χf,r(g)

#T(n)(q)

)k( ∑
h∈T □

µ (q) χf,r(h)
γn(q) · degn,1,r(q)k−1

)
.(104)

We repeat the same analysis as before, but apply it only to (104). Observe that (104)
is bounded above by
(105)

(#F1(q)) − 1
degn,1,r(q)k−1 · max

f∈F1(q)
f(z) ̸=z−1


∥∥∥∑g∈T(n)(q) χf,r(g)

∥∥∥
#T(n)(q)

k

· max
f∈F1(q)

f(z)̸=z−1

∥∥∥∑h∈T □
µ (q) χf,r(h)

∥∥∥
γn(q)

Applying Lemmas 5.2, 5.3, and 5.4 again, we see that (105) is

(106) O
(

q1+k(D(n)−n)−(k−1)·e(n,1,r)
)

.
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Observe that 1+k(D(n)−n) < 0 even if n = 1 due to the fact that k ⩾ 2 and D(1) = 0,
and (k−1)·e(n, 1, r) ⩾ 0 by Lemma 5.2. Therefore, 1+k ·(D(n)−n)−(k−1)·e(n, 1, r)
is negative. It follows that the limit as q → ∞ of (104) is zero. By Corollary 1.2, the
limit as q → ∞ of (103) equals

(107)
{

0 if r > 0,

1/zµ if r = 0.

The result now follows, as (103) makes the only potentially nontrivial contribution in
the limit q → ∞. □

6. Further work
6.1. Polynomiality results. We discuss some results regarding how similar gk,µ(q)
is to a polynomial for various choices of µ. Recall that γn(q), Pn,k(q), degn,d,r(q), and
Dn,k,d(q) are all rational functions of q with rational coefficients.

Corollary 6.1 (to Theorem 1.3). Suppose n, k ∈ N with n > 2. If µ ⊢ n with
m1(µ) = 1, then g□

k,µ(q) is a polynomial function of q with rational coefficients.

Proof. By Theorem 1.3, g□
k,µ(q) agrees with a rational function P/Q with rational

coefficients at all prime powers. In particular, since g□
k,µ(q) is an enumeration of certain

factorizations, P (q)/Q(q) ∈ Z for all prime powers q. Using polynomial division over
Q, we see that there exist polynomials R and S with rational coefficients such that

(108) P

Q
= R + S

Q

and deg S < deg Q. Choose a positive integer d such that d ·R has integer coefficients.
This guarantees d · R(q) ∈ Z for all prime powers q. It follows that

(109) d ·
(

P (q)
Q(q) − R(q)

)
= d · S(q)

Q(q) ∈ Z

for all prime powers q. Taking q to be sufficiently large and recalling deg S < deg Q
shows that S is identically zero. Thus, P/Q = R, a polynomial with rational coeffi-
cients. □

One might wonder if gk,µ(q) or g□
k,µ(q) is a polynomial function of q for other

values of µ, such as µ = (n). Note that, for all n, g1,(n)(q) = #T(n)(q) is, in fact, a
polynomial function of q. Unfortunately, gk,(n)(q) fails to be a polynomial function
of q when k ⩾ 2. However, we can at least prove Corollary 1.9, which states that
gk,(n)(q) is a quasipolynomial function of q in the case that n is prime and k ⩾ 2.

Proof of Corollary 1.9. We will apply a similar reasoning to that stated in the proof
of Corollary 6.1. Recall that Cn,k,c(q) is not a rational function of q in general, which
prevents gk,(n)(q) from being rational. Define for i ∈ {0, 1, . . . , n − 1} the set
(110) Mi = {q prime power : q ≡ i (mod n)}.

The result will follow once we can show that, for each c | n and i ∈ {0, . . . , n − 1}, we
have that Cn,k,c(q) becomes a polynomial in q when restricted to Mi.

In order to do this, it suffices to show that, for each i ∈ {0, . . . , n − 1} and choice
of c, s1, . . . , sk | n,

(111) lcm
(

qn − 1
qc − 1 , qs1 − 1, . . . , qsk − 1

)
agrees with some polynomial on Mi. Since n is prime, we have c, s1, . . . , sk ∈ {1, n}.
Furthermore, if any si = n, we have that (111) equals qn − 1, a fixed polynomial in q,
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independent of c or the congruence class of q. Therefore, for each choice of c ∈ {1, n},
we need only consider the case in which s1 = · · · = sk = 1 and hence must show that

(112) lcm
(

qn − 1
qc − 1 , q − 1

)
is a polynomial on each Mi.

Observe that, if c = n, then (112) equals q−1, a fixed polynomial in q, independent
of the congruence class of q. Therefore, we now need only consider the case c = s1 =
· · · = sk = 1 and hence must show that

(113) lcm
(

qn − 1
q − 1 , q − 1

)
is a polynomial on each Mi.

Let i ∈ {0, . . . , n − 1} and assume q = na + i for some a ∈ N. We can compute
(113) as

lcm
(

qn − 1
q − 1 , q − 1

)
= qn − 1

gcd ([n]q, q − 1) = qn − 1
gcd (n, q − 1)

= qn − 1
gcd(n, na + i − 1) = qn − 1

gcd(n, i − 1) =
{

qn−1
n i = 1

qn − 1 i ̸= 1.
(114)

The result now follows from the fact that (114) is a fixed polynomial in q for each
fixed i ∈ {0, . . . , n − 1}. □

Example 6.2. We now use our main results to write down alternate formulas for
g2,(2)(q) and g2,(3)(q). Note that Theorem 1.5 provides an explicit formula while The-
orem 1.8 determines the degree of the polynomials f0, . . . , fn−1 mentioned in Corol-
lary 1.9. First, for n = 2, we have

(115) g2,(2)(q) =
q(q − 1)3(q4 − 3q3 + 4q2 − 1

2 q − 1
2 )

8 + (−1)q · q(q + 1)(q − 1)3

16
for all prime powers q. Second, for n = 3, define polynomials

f0(q) = q6(q + 1)2(q − 1)4(q6 − 4q4 + 3q3 + 5q2 − 9q + 1)
27 ,

f1(q) = q3(q + 1)(q − 1)5(q9 + 2q8 − 2q7 − 3q6 + 5q5 + q4 − 9q3 − 4q2 − 2q + 2)
27 ,

f2(q) = q6(q + 1)2(q − 1)4(q6 − 4q4 + 3q3 + 5q2 − 9q + 1)
27 .

Letting ζ = e2πi/3, define

P1 = f0 + ζ2f1 + ζf2

3 , P2 = f0 + ζf1 + ζ2f2

3 , P3 = f0 + f1 + f2

3 .

Finally, we have

(116) g2,(3)(q) = ζqP1(q) + ζ2qP2(q) + P3(q)

for all prime powers q.

Remark 6.3. Data suggest that gk,(n)(q) might be a quasipolynomial function of q for
composite n as well. For instance, g2,(6)(q) agrees with a quasipolynomial on all prime
powers. Of course, there are no prime powers congruent to 0 (mod 6). However, when
g2,(6)(q) is replaced by the formula given in (11), it agrees with a fixed polynomial on
multiples of 6.
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6.2. Open problems. In this section, we list some open problems. Of course, one can
continue our present line of research by looking for explicit formulas for gk,µ(q) and
g□

k,µ(q) for cases not yet settled by this paper. However, we also present the following
problems associated with strengthening the existing results.

We start with the observation that Theorems 1.3 and 1.5 do not answer the question
of how products of regular elliptic elements are distributed among the individual
conjugacy classes that comprise the various cycle types. Recall that gk,(n)(q) counts
the k-tuples of regular elliptic elements whose product is any regular elliptic element
in GLn Fq. In particular, given a fixed regular elliptic element c ∈ GLn Fq, computing
gk,(n)(q) does not necessarily help one count the factorizations c = t1 · · · tk with
t1, . . . , tk ∈ T(n)(q). For example, consider the case of k = 2 for GL2 F5. There are
ten different conjugacy classes consisting of regular elliptic elements, and the various
orders of such elements are 3, 6, 8, 12, and 24. Given an arbitrary regular elliptic
element x ∈ GL2 F5 with order 3, 6, or 12, there are 76 ordered pairs of regular elliptic
elements whose product equals x. On the other hand, given an arbitrary regular elliptic
element y ∈ GL2 F5 with order 8 or 24, there are 64 ordered pairs of regular elliptic
elements whose product equals y. Refining the enumeration provided by computing
g2,(2)(5) to the level of individual conjugacy classes is thus more complicated than
simply dividing g2,(2)(5) by the number of conjugacy classes that comprise T(2)(5).
Therefore, we propose the following problem.
Problem 6.4. Refine Theorems 1.3 and 1.5 to the level of conjugacy classes.

Next, we recall Corollary 1.9, which says if n is prime, then gk,(n)(q) is a quasipoly-
nomial. Recall from Remark 6.3 that g2,(6)(q) is also a quasipolynomial. One might
hope that gk,(n)(q) is, in fact, always a quasipolynomial.

Problem 6.5. Prove that gk,(n)(q) is a quasipolynomial for composite n as well.

We conclude with a problem about q-analogues. As can be seen in (8), for some
choices of µ ⊢ n and after appropriately normalizing, g□

k,µ(q) appears to be a q-
analogue of gk,µ in the traditional q → 1 sense. Unfortunately, it is not clear whether
gk,(n)(q) exhibits the same behavior.

Problem 6.6. Establish a precise way in which gk,(n)(q) is a q-analogue of gk,(n).
As a final remark, we point out a certain incompatibility of our definition of cycle

type, inspired by [18, 32], with a related notion from more recent work. In [16, 21, 22],
the dimension of the fixed space of an element in GLn Fq plays the analogous role
to the number of cycles in a permutation in Sn. Whereas the cycle type in Sn is
a refinement of the number of cycles, our notion of cycle type in GLn Fq is not a
refinement of the dimension of the fixed space. Still, it might be worth investigating
ways to reconcile these two notions.
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