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Lagrangian combinatorics of matroids

Federico Ardila, Graham Denham & June Huh

Abstract The Lagrangian geometry of matroids was introduced in [2] through the construction
of the conormal fan of a matroid M. We used the conormal fan to give a Lagrangian-geometric
interpretation of the h-vector of the broken circuit complex of M: its entries are the degrees of
the mixed intersections of certain convex piecewise linear functions γ and δ on the conormal
fan of M. By showing that the conormal fan satisfies the Hodge-Riemann relations, we proved
Brylawski’s conjecture that this h-vector is a log-concave sequence.

This sequel explores the Lagrangian combinatorics of matroids, further developing the com-
binatorics of biflats and biflags of a matroid, and relating them to the theory of basis activities
developed by Tutte, Crapo, and Las Vergnas. Our main result is a combinatorial realization of
the intersection-theoretic computation above: we write the k-th mixed intersection of γ and δ

explicitly as a sum of biflags corresponding to the nbc bases of internal activity k + 1.

1. Introduction.
Let M be a matroid of rank r + 1 on n + 1 elements with no loops and no coloops.
The Lagrangian geometry of matroids was introduced in [2] through the construction
of the conormal fan of M. The conormal fan of M is a Lagrangian analogue of the
Bergman fan of M, which in turn is a tropical geometric model of M. We used the
conormal fan to give a tropical geometric interpretation of the h-vector of the broken
circuit complex BC(M). Explicitly, we identified convex piecewise linear functions γ
and δ whose mixed intersections satisfy
(1) γkδn−k−1 ∩ 1M,M⊥ = hr−k(BC(M)) for all k,
where 1M,M⊥ is the top-dimensional constant Minkowski weight 1 on the conormal
fan of M [2, Theorem 1.2]. We also showed that the conormal fan is Lefschetz, and in
particular, satisfies the Hodge–Riemann relations [2, Theorem 5.27]. Combining these
results, we proved Brylawski’s conjecture from [8] that the h-vector of the broken
circuit complex forms a log-concave sequence, that is,

hi(BC(M))2 ⩾ hi−1(BC(M))hi+1(BC(M)) for all i.
In this followup paper, we explore the Lagrangian combinatorics of matroids

through an investigation of the combinatorial structure of the conormal fan. We
further develop the study of biflats and biflags of matroids, initiated in [2], unveiling
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a strong connection to the theory of basis activities developed by Tutte [22], Crapo
[9], Las Vergnas [17], and others.

Our starting point is the combinatorial Definition 1.7 of the conormal Chow ring
of M as a quotient of the polynomial ring in the variables xF |G corresponding to the
biflats F |G of M . The quotient is graded and has degree n−1. By Poincaré duality, its
top degree component is one-dimensional. Each of γ and δ can be expressed, in many
equivalent ways, as a linear function in the xF |Gs. Our goal is to compute γkδn−k−1 in
this ring. We develop a canonical expansion of this expression in terms of the reduced
broken circuit complex of M , obtaining the following bijective manifestation of [2,
Theorem 1.2].

Theorem 1.1. For 0 ⩽ k ⩽ r, in the conormal Chow ring of M, we have

γkδn−k−1 =
∑

B

xF+(B)|G+(B),

where the sum is over the nbc bases of M of internal activity k + 1.

The symbol F+(B)|G+(B) stands for the extended nbc biflag associated to an nbc
basis B in Section 2.2. By construction, for every such B,

xF+(B)|G+(B) ∩ 1M,M⊥ = 1.

Since M has exactly hr−k(BC(M)) nbc bases with internal activity k + 1, Theorem
1.1 is equivalent to (1) and [2, Theorem 1.2].

The proof of Theorem 1.1 that we give here is logically independent from the one in
our earlier paper: the argument there proceeded by establishing the special case k = 0
first ([2, Proposition 4.9]) and then using the theory of Chern–Schartz–MacPherson
cycles of matroids introduced by López de Medrano, Rincón, and Shaw [18] to prove
the general case. Our main goal here is to give an alternative, entirely combinatorial
proof of this result. Our proof sheds light on the matroidal structure of the conormal
Chow ring, and its connections with the theory of basis activities.

1.1. Enumerative combinatorics of matroids. For the remainder of this pa-
per, we fix a total ordering on the ground set E of M and identify E with the set
{0, 1, . . . , n}. We refer to [21, 24] for any undefined matroid terminology. We are
interested in the following r-dimensional simplicial complexes associated to M:

(i) The independence complex IN(M), the collection of subsets of E which do not
contain any circuit of M.

(ii) The broken circuit complex BC(M), the collection of subsets of E which do
not contain any broken circuit of M.

A broken circuit is a subset obtained from a circuit of M by deleting the least element
in the fixed ordering on E. The broken circuit complex BC(M) is the cone over the
reduced broken circuit complex BC(M) with apex 0.

For a simplicial complex ∆ of dimension r, its f -vector f(∆) = (f0, f1, . . . , fr+1)
is defined by

fi(∆) = the number of faces in ∆ with i vertices.
The f -vector is often stored more compactly in the h-vector h(∆) = (h0, h1, . . . , hr+1),
given by

r+1∑
i=0

fi(∆)qr−i+1 =
r+1∑
i=0

hi(∆)(q + 1)r−i+1.

The h-vector of the broken circuit complex is given by
hr−k(BC(M)) = hr−k(BC(M)) = tk+1,0(M) for all k,
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where ti,j(M) is the coefficient of xiyj in the Tutte polynomial TM(x, y) [5]. In par-
ticular, hr+1(BC(M)) is zero, and hr(BC(M)) is Crapo’s beta invariant

βM = t1,0(M).

The authors of [1] and [2] proved the following results, conjectured by Mason and
Hoggar [14, 19] and by Brylawski and Dawson [8, 10], respectively.

Theorem 1.2. The following hold for any matroid M.
(1) The f -vectors of IN(M) and BC(M) are log-concave [1].
(2) The h-vectors of IN(M) and BC(M) are log-concave [2].

We note that the independence complex of any matroid is the reduced broken
circuit complex of another matroid [7, Theorem 4.2], and, for any simplicial complex,
the log-concavity of its h-vector implies the log-concavity of its f -vector [6, Corollary
8.4]. Also, for Theorem 1.2, we may suppose that M has no loops and no coloops. We
thus focus on the h-vector of the broken circuit complex of a matroid with no loops
and no coloops. One of the main ingredients in the proof of Theorem 1.2 in this case is
the above-mentioned formula for the h-vector [2, Theorem 1.2], which we strengthen
in Theorem 1.1.

Remark 1.3. For matroids representable over the field of complex numbers, the
intersection-theoretic formula for the h-vector of the broken circuit complex was given
in [11], and the connection to the Chern–Schwartz–MacPherson classes was observed
in [15, 16]. Varchenko’s conjecture on the number of critical points of products of lin-
ear forms [23], proved by Orlik and Terao in [20], is equivalent to the central special
case of the formula

δn−1 ∩ 1M,M⊥ = hr(BC(M)).

Recently, for any matroid, Berget, Eur, Spink, and Tseng proved a very general and
closely related formula

∑
i,j,k,l

(∫
XE

αiβjck(S∨
M)cl(QM)

)
xiyjzkwl = (y + z)r(x + w)n−r+1

x + y
TM

(x + y

y + z
,

x + y

x + w

)
summing over all i, j, k, l such that i + j + k + l = n, where ck(S∨

M) and cl(QM)
are tautological Chern classes of M [4, Theorem A]. They used this identity to give
another proof of Theorem 1.2. To deduce Theorem 1.2 from their formula, they used
the fact [3, 12] that many functions of matroids behave valuatively under matroid
polytope subdivisions. This allowed them to reduce key computations to the case of
representable matroids and prove them using an algebro-geometric argument, thus
avoiding the combinatorics of biflats and biflags. The final part of their proof also
employs the fact, proved in [2], that the conormal fan of a matroid is a Lefschetz fan.
We refer to [4, Remark 9.9] for a comparison of the two proofs of Theorem 1.2.

Example 1.4. We will use two running examples throughout the paper. The first is
the graphical matroid of the graph G of the pyramid, whose dual is also the matroid
of the pyramid G⊥. The second is the graphical matroid of the graph H of the cube,
whose dual is the graphical matroid of the graph H⊥ of the octahedron. These are
shown in Figure 1 and Figure 2. The f -vectors and h-vectors of their broken circuit
complexes are shown in Table 1.
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f -vector of BC(M) h-vector of BC(M)
pyramid G (1, 7, 17, 14) (1, 4, 6, 3)
cube H (1, 11, 55, 159, 282, 290, 133) (1, 5, 15, 29, 40, 32, 11)

Table 1. The f -vectors and h-vectors of the broken circuit com-
plexes of two graphs.
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Figure 1. The graph G of the pyramid and its dual graph G⊥.
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Figure 2. The graph H of the cube and its dual graph H⊥.

1.2. Lagrangian combinatorics of matroids. This paper explores the algebraic-
combinatorial structure of the conormal Chow ring AM,M⊥ introduced in [2, Section
3.5]. The conormal Chow ring is an extension of the Chow ring AM studied in [13]
and [1]. We recall the central combinatorial notions from [2].

• A biflat F |G of M consists of a flat F of M and a flat G of the dual matroid
M⊥ such that they are nonempty, they are not both equal to E, and their
union is E.

• Two biflats F |G and F ′|G′ of M are compatible if

(F ⊆ F ′ and G ⊇ G′) or (F ⊇ F ′ and G ⊆ G′).
• A biflag of M is a collection F|G of pairwise compatible biflats of M satisfying⋃

F |G∈F|G
F ∩ G ̸= E.

The length of F|G is k, the number of biflats it contains.

Remark 1.5. Let F be an increasing sequence of k nonempty flats of M, say

F = (∅ ⊊ F1 ⊆ · · · ⊆ Fk ⊆ E),
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and let G be a decreasing sequence of k nonempty flats of M⊥, say

G = (E ⊇ G1 ⊇ · · · ⊇ Gk ⊋ ∅).

Then the collection F|G consisting of the pairs F1|G1, . . . , Fk|Gk is a biflag of M if
and only if

Fj ∪ Gj = E for all 1 ⩽ j ⩽ k and Fj ∪ Gj+1 ̸= E for some 0 ⩽ j ⩽ k.

See [2, Proposition 2.15] for a straightforward verification.

Example 1.6. We write F|G as a table with rows F and G, augmented with the
columns ∅|E and E|∅. For example, for the square pyramid graph G of Figure 1,
01256|1347 is a biflat and

∅ 01256 E
E 1347 ∅ ⊂ ∅ 5 56 01256 E E

E E E 1347 3 ∅ ⊂ ∅ 5 56 01256 01256 E E E
E E E 1347 347 347 3 ∅

are three biflags of biflats; the third one is maximal.

The biflats and biflags of a matroid encode the combinatorics of the conormal fan,
described in [2, Section 3.4]. Our main algebraic object of interest is the Chow ring
of the conormal fan, which we now define independently. We begin with a polynomial
ring SM,M⊥ with real coefficients and variables xF |G indexed by the biflats of M. For
any set of biflats F|G, we consider the monomial

xF|G =
∏

F |G∈F|G

xF |G.

We also define, for every element i in the ground set E, the linear forms

γi =
∑

i∈F, F ̸=E

xF |G, γi =
∑

i∈G, G ̸=E

xF |G, δi =
∑

i∈F ∩G

xF |G.

These linear forms correspond to certain convex piecewise linear functions on the
conormal fan of M [2, Section 3.4]. We write

• IM,M⊥ for the ideal generated by the monomials xF|G, where F|G is not a
biflag, and

• JM,M⊥ for the ideal generated by the linear forms γi − γj and γi − γj , for any
i and j in E.

Definition 1.7. The conormal Chow ring of M is the quotient

AM,M⊥ = SM,M⊥/(IM,M⊥ + JM,M⊥).

The equivalence classes of γi and γi in the conormal Chow ring do not depend on i.
We denote these classes by γ and γ, respectively.

We note that the equivalence class of δi in the conormal Chow ring also does not
depend on i: For every biflat F |G, the element i must be in F or in G, and hence

δi = γi + γi −
∑

F ̸=E,G̸=E

xF |G.

We write δ for the class of these elements in the conormal Chow ring. In [2, Section
3.5], we constructed the degree map

deg : An−1
M,M⊥ −→ R, xF|G 7−→ xF|G ∩ 1M,M⊥ =

{
1 if F|G is a biflag,
0 if F|G is not a biflag.
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In [2, Theorem 1.2], we gave the following interpretation of h(BC(M)) in terms of the
conormal intersection theory of M:

deg(γkδn−k−1) = γkδn−k−1 ∩ 1M,M⊥ = hr−k(BC(M)) for 0 ⩽ k ⩽ r.
As we explained above, a central goal of this paper is to give a bijective proof of this
numerical identity.

2. Biflats and biflags of matroids.
Throughout the paper, we will fix a loopless and coloopless matroid M with ground set
E of size n+1 and rank r+1. The dual matroid M⊥ has rank r⊥+1 := (n+1)−(r+1) =
n − r.

2.1. Combinatorics of biflags. The following lemma is the combinatorial man-
ifestation of the fact that the conormal fan is pure of dimension n − 1. Its proof
introduces several ideas that will be useful in what follows.

Lemma 2.1. Every maximal biflag of M has length n − 1.

Proof. Let F|G be a biflag consisting of biflats F1|G1, . . . , Fk|Gk, say
F = (∅ ⊊ F1 ⊆ · · · ⊆ Fk ⊆ E) and G = (E ⊇ G1 ⊇ · · · ⊇ Gk ⊇ ∅).

For every i, we write ri for the rank of Fi in M and r⊥
i for the rank of Gi in M⊥. We

have
k+1∑
i=1

(
(ri − ri−1) + (r⊥

i−1 − r⊥
i )
)

= (r + 1) + (r⊥ + 1) = n + 1.

If j is an index satisfying Fj∪Gj+1 ̸= E, then we must have Fj ̸= Fj+1 and Gj ̸= Gj+1,
so

(rj − rj−1) + (r⊥
j−1 − r⊥

j ) ⩾ 2.

Since every summand of n + 1 is positive, there can be at most n summands, so
k ⩽ n − 1.

We now show that F|G is not maximal if k < n−1. We consider two cases separately.
(1) We have ri − ri−1 ⩾ 2 or r⊥

i−1 − r⊥
i ⩾ 2 for some i.

Suppose ri − ri−1 ⩾ 2. Choose any flat F with Fi−1 ⊊ F ⊊ Fi. If F ∪ Gi ̸= E, then
F |Gi−1 is a biflat, and hence F+|G+ := F|G ∪ F |Gi−1 is a biflag. On the other hand,
if F ∪ Gi = E, then F |Gi is a biflat, and F+|G+ := F|G ∪ F |Gi is a biflag.

(2) We have ri − ri−1 ⩽ 1 and r⊥
i−1 − r⊥

i ⩽ 1 for all i.
In this case, (ri − ri−1) + (r⊥

i−1 − r⊥
i ) ⩽ 2 for all i, so at least two summands

of n + 1 are equal to 2. Therefore, at least two values i = j, j′ satisfy ri − ri−1 =
r⊥

i−1 − r⊥
i = 1, and hence Fi−1 ⊊ Fi and Gi−1 ⊋ Gi. At least one of these, say

j′, satisfies that Fj′−1 ∪ Gj′ ̸= E. Consider the other one; Fj |Gj−1 is a biflat, and
F+|G+ := F|G ∪ Fj |Gj−1 is a biflag, because it satisfies Fj′−1 ∪ Gj′ ̸= E. □

We will often use the following basic result which follows from, for example, [21,
Proposition 2.11]; see also [2, Lemma 3.15].

Lemma 2.2. If F and G are nonempty flats of M and M⊥ respectively then |F ∪G| ≠ n.

We close this section with some definitions that will be useful throughout the paper.
Let F|G be a biflag of M. As above, we write F and G for the flags

F = (∅ ⊊ F1 ⊆ · · · ⊆ Fk ⊆ E) and G = (E ⊇ G1 ⊇ · · · ⊇ Gk ⊇ ∅),
where k is the length of F|G, and F0 = Gk+1 = ∅ and Fk+1 = G0 = E.
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Definition 2.3. The gap sequence of F|G, denoted D(F|G), is the sequence of gaps
D0|D1| · · · |Dk, where Dj := (Fj+1 − Fj) ∩ (Gj − Gj+1) = E − (Fj ∪ Gj+1).

The notion of gaps appears naturally in the model of the conormal fan as a con-
figuration space [2, Section 2]. Each nonempty gap must have size at least 2, as we
noted above.

Definition 2.4. The jump sets of F|G are
J(F) = {j | 0 ⩽ j ⩽ k and Fj ⊊ Fj+1} ,

J(G) = {j | 0 ⩽ j ⩽ k and Gj ⊋ Gj+1} .

The double jump set is J(F) ∩ J(G); the elements of these sets are called jumps of F
and G and double jumps of F|G, respectively.

If the gap Dj is nonempty, then j must be a double jump. Thus, by definition,
every biflag has at least one double jump. The double jumps of a biflag F|G play an
important role throughout the paper, so we mark them ⊊ and ⊋ in the table for F|G.

Example 2.5. Consider the biflag F|G given by the table
∅ 5 56 ⊊ 01256 ⊊ E E
E E E ⊋ 1347 ⊋ 3 ∅ .

The biflag has jump sets J(F) = {0, 1, 2, 3} and J(G) = {2, 3, 4}. The set of double
jumps is {2, 3}, and the gap sequence is ∅|∅|02|47|∅|.

Lemma 2.6. The gaps of F|G are pairwise disjoint, and their union is
k⊔

j=0
Dj = E −

k⋃
i=1

(Fi ∩ Gi) .

Proof. One easily verifies the first claim. For the second, first suppose e ∈ Fi ∩ Gi.
Then e ∈ Fj for all j ⩾ i, which means e ̸∈ Dj for i ⩽ j ⩽ k. Dually, e ∈ Gj for all
j ⩽ i, so e ̸∈ Dj for all 0 ⩽ i ⩽ j − 1. Now suppose e is not in any gap. In this case,
consider the index 1 ⩽ i ⩽ k + 1 for which e ∈ Fi − Fi−1. Since e ∈ Fi−1 ∪ Gi, we
must have e ∈ Gi and hence e ∈ Fi ∩ Gi. □

2.2. Extended nbc biflags. In this section, we construct the biflag F(B)|G(B)
and the extended biflag F+(B)|G+(B) associated to each nbc basis B of M: These are
the biflags we need to give a combinatorial formula for γkδn−k−1 in Theorem 1.1.

We begin by recalling some basic facts about matroids on an ordered ground set.
For each basis B ⊆ E of M, we write B⊥ := E −B for the corresponding dual basis of
M⊥. Each i /∈ B has a unique dependence on B, that is, there is a unique fundamental
circuit C(B, i) contained in B ∪ i and containing i. Dually, for each i ∈ B, there is a
unique fundamental cocircuit in B⊥ ∪ i containing i, denoted C⊥(B, i).

Definition 2.7. The externally active set for B in M is defined to be
EA(B) = {i /∈ B | i = min C(B, i)}

= {i /∈ B | B is the lexicographically largest basis contained in B ∪ i} .

Dually, the internally active set for B in M is defined to be
IA(B) =

{
i ∈ B | i = min C⊥(B, i)

}
= {i ∈ B | B is the lexicographically smallest basis containing B − i} .

The internally passive and externally passive sets of B are IP(B) = B − IA(B) and
EP(B) = B⊥ − EA(B), respectively.
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Activities behave well with respect to matroid duality: The internally active set of
B in M equals the externally active set of B⊥, and the externally active set of B in
M equals the internally active set of B⊥. According to [9, 22], the Tutte polynomial
of M equals

TM(x, y) =
∑

B

x| IA(B)|y| EA(B)|.

In particular, for any natural numbers i and e, the number ti,e of bases B of M with
| IA(B)| = i and | EA(B)| = e is independent of the ordering of the ground set E.

Definition 2.8. We say a basis B of M is a no broken circuit basis or nbc basis if
EA(B) = ∅. This is equivalent to demanding that B does not contain any broken
circuit, that is, any set of the form C − min C where C is a circuit.

We now associate a biflag to each nbc basis of M. We will later see how these biflags
arise naturally in the Lagrangian combinatorics of ordered matroids.

Proposition 2.9. (nbc biflags) Let B be a nbc basis with | IA(B)| = k +1. Define the
sequence E(B) = (e1, . . . , er−k, er−k+1, . . . , en−k−1) by the conditions

B − IA(B) = {e1 > · · · > er−k} and B⊥ − min B⊥ = {er−k+1 < · · · < en−k−1}.

Let F(B) and G(B) be the flags of length n − k − 1 given by

Fj |Gj =
{

cl{e1, e2, . . . , ej}|E for 1 ⩽ j ⩽ r − k,

E| cl⊥{ej , ej+1, . . . , en−k−1} for r − k + 1 ⩽ j ⩽ n − k − 1,

where cl and cl⊥ stand for the closure operators of M and M⊥. Then F(B)|G(B) is a
biflag of M.

The biflag F(B)|G(B) is the nbc biflag associated to B. The table for F(B)|G(B) reads

cl(e1) · · · cl(e1, . . . , er−k) ⊊ E · · · E

E · · · E ⊋ cl⊥(er−k+1, . . . , en−k−1) · · · cl⊥(en−k−1)

We call xF(B)|G(B) an nbc monomial of M.

Proof. Let x be the minimum element of B⊥. We need to verify that

cl(B − IA(B)) ∪ cl⊥(B⊥ − x) ̸= E.

Assume this is not the case. Since x /∈ cl⊥(B⊥ − x), we must have x ∈ cl(B − IA(B)).
Thus the fundamental circuit C(B, x) satisfies C(B, x) ⊆ B − IA(B) ∪ x. Since B is
nbc , the minimum element of this circuit is some y < x. Also, since y ∈ B − IA(B),
the minimum element in the fundamental cocircuit C⊥(B, y) is some z < y, and hence
z < x as well. However, C⊥(B, y) ⊆ B⊥ ∪ y shows that z ∈ B⊥, contradicting the
minimality of x. □

Example 2.10. We illustrate the construction above with the example of Figure 2.
This matroid has n + 1 = 12 elements, rank r + 1 = 7, and corank r⊥ + 1 = 5. Let us
order the ground set 0 < 1 < · · · < 9 < a < b. Consider the nbc basis B = 015678b,
whose internally active set IA(B) = 016 has k + 1 = 3 elements, marked in green. We
have E(B) = (b, 8, 7, 5; 3, 4, 9, a), and F(B)|G(B) is given by the table

∅ b 8b 78b 578b ⊊ E E E E E
E E E E E ⊋ 03469a 469a 69a a ∅ .

For each proper flat Fi and proper coflat Gi, we have written in bold the new element
ei that is not present in Fi−1 and Gi+1, respectively.
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We now augment each nbc biflag to a maximal biflag containing it. Let B be a nbc
basis with

IA(B) = {c1 > · · · > ck+1}.

Define the sequence E(B) and the biflag F(B)|G(B) as in Proposition 2.9, and set
S = B − IA(B) and T = B⊥ − min B⊥.

Proposition 2.11. (Extended nbc biflags) Let i be the largest index such that

ci /∈ cl(S) ∪ cl⊥(T ),
or equivalently, the smallest index such that

cl(S, c1, . . . , ci) ∪ cl⊥(T ) = E.

We define the flags F+(B) and G+(B) of length n − 1 by inserting the following k
columns at the double jump between columns r − k and r − k + 1 of the table for
F(B)|G(B):

cl(S, c1) · · · cl(S, c1, . . . , ci−1) ⊊ cl(S, c1, . . . , ci) · · · cl(S, c1, . . . , ck)
E · · · E ⊋ cl⊥(T ) · · · cl⊥(T ) .

Explicitly, we define F+(B)|G+(B) by setting

F +
j |G+

j =


cl{e1, e2, . . . , ej}|E for 1 ⩽ j ⩽ r − k,

cl{S, c1, . . . , cj−(r−k)}|E for 1 ⩽ j − (r − k) ⩽ i − 1,

cl{S, c1, . . . , cj−(r−k)}| cl⊥(T ) for i ⩽ j − (r − k) ⩽ k,

E| cl⊥{ej−k, ej−k+1, . . . , en−k−1} for 1 ⩽ j − r ⩽ n − r − 1.

Then F+(B)|G+(B) is a maximal biflag of M.

We call F+(B)|G+(B) the extended nbc biflag of the nbc basis B.

Proof. The only statement requiring proof is the equivalence between the two different
definitions of i. Let i be the largest index for which ci /∈ cl(S) ∪ cl⊥(T ). We verify two
statements:

(1) cl(S, c1, . . . , ci−1) ∪ cl⊥(T ) ̸= E.
To see this, notice that ci /∈ cl(S, c1, . . . , ci−1) because {S, c1, . . . , ci−1, ci} ⊆ B is
independent.

(2) cl(S, c1, . . . , ci) ∪ cl⊥(T ) = E.
For this, let cl(S, c1, . . . , ci) ∪ cl⊥(T ) = U , and consider any element e ̸= min B⊥.

(2-1) If e ∈ B⊥ − min B⊥ = T , then e ∈ U .
(2-2) If e ∈ IP(B) = S, then e ∈ S ⊆ cl(S) ⊆ U .
(2-3) If e ∈ IA(B), then e = cj for some index j. If j > i, then by the maximality

of i, we have cj ∈ cl(S) ∪ cl⊥(T ) ⊆ U . If j ⩽ i, then cj ∈ {S, c1, . . . , ci} ⊆ U .
In either case, e ∈ U .

We conclude that U ⊇ E − min B⊥. Since |U | ≠ n by Lemma 2.2, we must have
U = E. □

Example 2.12. We continue with Example 2.10, which described the nbc biflag corre-
sponding to the nbc basis B = 015678b for Figure 2. We now augment it to a maximal
biflag. The set

IA(B) = 016 = {c1 > c2 > c3}
determines the two top row entries to be added, namely,

cl(S, c1) = 5678b and cl(S, c1, c2) = 1256789ab.
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Notice that i = 2 is the largest index for which ci ∈ E − cl(S) ∪ cl⊥(T ) = 12 and also
the smallest index such that cl(S, c1, . . . , ci) ∪ cl⊥(T ) = E. Therefore the bottom row
entries switch from E to 03469a between positions i − 1 = 1 and i = 2:

∅ b 8b 78b 578b 5678b ⊊ 1256789ab E E E E E
E E E E E E ⊋ 03469a 03469a 469a 69a a ∅ .

The resulting table corresponds to the extended nbc biflag F+(B)|G+(B).

3. A lower bound for γkδn−k−1.
We aim to compute the degree of γkδn−k−1 by expressing it as a sum of square-free
monomials xF|G. One fundamental feature of the computation of γkδn−k−1, which is
simultaneously an advantage and a difficulty, is that there are many different ways to
carry it out, since we have n + 1 different definitions of γ and δ, namely γ = γi and
δ = δi for every i ∈ E. It is not clear from the outset how one should organize this
computation.

To have control over the computation, we require some structure amidst that free-
dom. To achieve this, we introduce two key tools in this section:

• (Definition 3.3) a canonical way of expanding powers of δ, and
• (Lemma 3.11) a criterion on a monomial m that guarantees that m · γk = 0.

As we will see in Section 4, the criterion in Lemma 3.11 shows that most expressions
of the form m · γk vanish in degree n − 1. The procedure in Definition 3.3 will provide
the combinatorial structure necessary to describe the terms that remain.

3.1. The canonical expansion of δm. Let F|G be a biflag and xF|G be the corre-
sponding square-free monomial. Recall from Lemma 2.6 that the union of the gaps of
F|G is nonempty and equals

D0 ⊔ · · · ⊔ Dk = E −
k⋃

j=1
(Fj ∩ Gj).

Definition 3.1. (Canonical expansion of xF|G δ) For a monomial xF|G, let

e = e(F|G) := max
(
E −

k⋃
j=1

(Fj ∩ Gj)
)
,

Define the canonical expansion of xF|Gδ to be the expression

xF|G δe = xF|G
∑

e∈F ∩G

xF |G.

We recursively obtain the canonical expansion of xF|Gδm by multiplying each mono-
mial in the canonical expansion of xF|Gδm−1 by δ, again using the canonical expansion.

Lemma 3.2. The canonical expansion of xF|G δ is the sum of the monomials
x(F∪F )|(G∪G) corresponding to the biflags of the form (F ∪ F )|(G ∪ G) ⊋ F|G such
that e ∈ F ∩ G. If j is the unique index for which e ∈ Fj+1 − Fj, then e ∈ Gj − Gj+1.
Furthermore, the nonzero terms correspond to the biflats F |G with Fj ⊆ F ⊆ Fj+1
and Gj ⊇ G ⊇ Gj+1.

Proof. The first statement follows directly from definition. For the second one, assume
e ∈ Fj+1 − Fj . Since e ∈ Fj+1 but e /∈ Fj+1 ∩ Gj+1, we have e /∈ Gj+1. Since e /∈ Fj

but Fj ∪ Gj = E, we have e ∈ Gj . Therefore e ∈ Gj − Gj+1 as desired. Finally, if
(F ∪ F )|(G ∪ G) is a biflag with e ∈ F ∩ G, then e /∈ Fj and e /∈ Gj+1 imply that the
biflat F |G must be added in between indices j and j + 1 of F|G. Conversely, any such
biflat arises in this expansion. □
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Definition 3.3. (Canonical expansion of δm) Given the canonical expansion δj =
xF1|G1 + · · · + xFt|Gt

, we compute the canonical expansion of δj+1 = xF1|G1 δ + · · · +
xFt|Gt

δ by adding the canonical expansions of the individual terms, following Defini-
tion 3.1.

We may think of the canonical expansion of δm as a recursive procedure to produce
a list of biflags of length m, fan ΣM,M⊥ , where each biflag is built up one biflat at a
time according to the rules prescribed in Lemma 3.2.

Example 3.4. For the graph G of the square pyramid in Figure 1, the canonical
expansion of the highest nonzero power of δ in AM,M⊥ , namely δn−1 = δ6, is

δ6 = x6|E x56|E x4567|E xE|23467 xE|347 xE|7

+x7|E x57|E x4567|E xE|23467 xE|36 xE|6

+x7|E x67|E x4567|E xE|235 xE|35 xE|5.

This expression is deceivingly short. Carrying out this seemingly simple computation
by hand is very tedious; if one were to do it by brute force, one would find that the
number of terms of the canonical expansions of δ0, . . . , δ6 are the following:

δ0 δ1 δ2 δ3 δ4 δ5 δ6

# of monomials counted with multiplicity 1 29 352 658 383 69 3
# of distinct monomials 1 29 333 621 370 68 3

.

This example shows typical behavior: for small k the number of biflags in the expan-
sion of δk increases with k, but as k approaches n − 1, increasingly many products
xF|G δ are zero, and the canonical expansions become shorter.

Each monomial contribution xF|G to the canonical expansion of δm is built up
through a sequence of monomials

1 = xF0|G0 , xF1|G1 , . . . , xFm|Gm = xF|G,

where xFk+1|Gk+1 appears in the canonical expansion of xFk|Gk δ = xFk|Gk δe(Fk|Gk).
We relabel the e(Fk|Gk)s, writing ei = e(Fk|Gk) if the i-th biflat of the final biflag F|G
is obtained in the canonical expansion of xFk|Gk δ. Thus both the flat and the coflat of
that i-th biflat must contain ei. We call the resulting sequence E = (e1, . . . , em) the
arrival sequence of this contribution. We summarize the definition of the canonical
expansion of δm and the arrival sequence of each term in the following proposition.

Proposition 3.5. The canonical expansion of δm consists of the monomials xF|G
indexed by the collection Tm

M,M⊥ of all pairs (F|G, E) for which
(1) the biflag F|G = {F1|G1, . . . , Fm|Gm} is a biflag of biflats of M, and
(2) the arrival sequence E = (e1, . . . , em) is a sequence of distinct elements of E

such that

ei ∈ Fi ∩ Gi and ei = max
(
E −

⋃
j : ej>ei

(Fj ∩ Gj)
)

for all 1 ⩽ i ⩽ m.

In symbols, the following identity holds in the conormal Chow ring of M:

δm =
∑

(F|G,E)∈Tm

M,M⊥

xF|G.

We record each pair (F|G, E) ∈ Tm
M,M⊥ as a table, where we expand the table of

biflag F|G by placing element ei directly below Fi and Gi. Each contribution to the
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canonical expansion δm comes from such a table.
∅ ⊊ F1 ⊆ · · · ⊆ Fd ⊆ Fd+1 ⊆ · · · ⊆ Fm ⊆ E
E ⊇ G1 ⊇ · · · ⊇ Gd ⊇ Gd+1 ⊇ · · · ⊇ Gm ⊋ ∅

e1 · · · ed ed+1 · · · em

The canonical expansion of δm may contain repeated terms xF|G which lead to differ-
ent tables (F|G; E) with the same biflat F|G but different arrival sequences E .

Example 3.6. Let us revisit the canonical expansion of δ6, the highest power of δ, in
Example 3.4. The first monomial arises from the following table.

∅ ⊂ 6 ⊊ 56 ⊊ 4567 ⊊ E = E = E = E
E = E = E = E ⊋ 23467 ⊋ 347 ⊋ 7 ⊃ ∅

e1 = 6 e2 = 5 e3 = 4 e4 = 2 e5 = 3 e6 = 7
The terms xFi|Gi

arrive to the monomial xF|G in the descending order of the eis,
namely,

xE|7x6|Ex56|Ex4567|ExE|347xE|23467.

This means that xE|7 is in the canonical expansion of δ = δ7, xE|7x6|E is in the
canonical expansion of xE|7δ = xE|7δ6, xE|7x6|Ex56|E is in the canonical expansion
of xE|7x6|Eδ = xE|7x6|Eδ5, and so on. The corresponding biflag is F(B)|G(B) for the
nbc basis B = 0456 with IA(B) = 0, as introduced in Definition 2.9.

The other monomials in our expansion of δ6 are x7|E x57|E x4567|E xE|23467 xE|36 xE|6
and x7|E x67|E x4567|E xE|235 xE|25 xE|5, which correspond to the biflags of 0457 and
0467, respectively. These are the other two nbc bases whose only internally active
element is 0. Note that we must have 0 ∈ IA(B) for any nbc basis B.

This example illustrates a general phenomenon: The case k = 0 of Theorem 1.1
says that the terms of the canonical expansion of δn−1 in the conormal Chow ring
correspond to the nbc biflags of the nbc bases B of M with | IA(B)| = 1; these are
also known as the β-nbc bases of M. They are enumerated by Crapo’s beta invariant
βM = hr(BC(M)) = t1,0(M): see [25].

3.2. hr−k-many nbc monomials in δn−k−1. To each nbc basis B of M, we associated
a sequence E(B) and a biflag F(B)|G(B) in Definition 2.9. We will now show that the
table (F(B)|G(B), E(B)) satisfies the conditions of Proposition 3.5, and hence the
nbc monomial xF(B)|G(B) appears in the canonical expansion of δn−k−1 with arrival
sequence E(B), where k + 1 = | IA(B)|.

Example 3.7. For the cube graph of Figure 2 and k = 2, the nbc basis 015678b with
IA(B) = 016 gives rise to the nbc biflag of Example 2.10, and the table

∅ b 8b 78b 578b ⊊ E E E E E
E E E E E ⊋ 03469a 469a 69a 9 ∅

b 8 7 5 3 4 9 a

gives rise to the following nbc monomial in the canonical expansion of δ8:
xb|E x8b|E x78b|E x578b|E xE|03469a xE|469a xE|69a xE|9.

Proposition 3.8. If B is a nbc basis of M with |I(B)| = k+1, then the nbc monomial
xF(B)|G(B) arises in the canonical expansion of δn−k−1.

Proof. We verify that (F(B)|G(B), E(B)) satisfies the conditions of Proposition 3.5.
We know that F(B)|G(B) is a biflag by Proposition 2.9, so it remains to show that

e = max
(
E − cl(IP(B)>e) − cl⊥(B⊥

>e)
)

for any e ∈ IP(B) or e ∈ B⊥ − min B⊥.

First, we show that e ∈ E − cl(IP(B)>e) − cl⊥(B⊥
>e), considering two cases:
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(1) e ∈ B⊥ − min B⊥: In this case, e /∈ cl⊥(B⊥
>e) since B⊥ is independent in M⊥.

Also, if we had e ∈ cl(IP(B)>e), then the fundamental circuit C(B, e) would
be contained in IP(B)>e ∪ e, and hence its smallest element would be e. Thus
e would be externally active in B, contradicting the assumption that B is a
nbc basis.

(2) e ∈ IP(B): In this case, e /∈ cl(IP(B)>e) since IP(B) ⊆ B is independent in
M. Also, if we had e ∈ cl⊥(B⊥

>e), then the fundamental cocircuit C⊥(B, e)
would be contained in B⊥

>e ∪ e, and hence its smallest element would be e,
contradicting that a is internally passive in B.

Now, for the sake of contradiction, let us assume that max
(
E − cl(IP(B)>e) −

cl⊥(B⊥
>e)
)

= f > e. We consider three cases:
(1) f ∈ B⊥: Then f > e would imply f ∈ B⊥

>e ⊆ cl⊥(B⊥
>e).

(2) f ∈ IP(B): Then f > e would imply f ∈ IP(B)>e ⊆ cl(IP(B)>e).
(3) f ∈ IA(B): This means that f = min C⊥(B, f), so this fundamental cocircuit

is contained in B⊥
>f ∪ f . Thus f ∈ cl⊥(B⊥

>f ) while f /∈ cl⊥(B⊥
>e), which is

impossible since B⊥
>f ⊆ B⊥

>e.
This completes the proof. □

3.3. Multiplying by a high power of γ eradicates non-initial monomials.

Lemma 3.9. Consider a monomial xF|G and let l be the largest index for which Fl ̸= E.
If c /∈ Fl, then xF|G γc is the sum of the monomials x(F∪F )|(G∪G) corresponding to the
variables xF |G with Fl ∪ c ⊆ F ⊊ E and Gl ⊇ G ⊇ Gl+1.

Proof. We have xF|G γc = xF|G
∑

c∈F ̸=E xF |G. Now, if (F ∪ F )|(G ∪ G) is a biflag
with c ∈ F ̸= E, then we must have Fl ⊊ F ⊊ E = Fl+1, so the biflat F |G must
be added in between indices l and l + 1 of F|G. Conversely, any such biflat arises in
this expansion. □

Definition 3.10. Let us call a monomial xF|G initial if the distinct flats in F have
ranks 1, 2, . . . , i, and r + 1 for some i.

The following technical lemma will play an important role. It shows that the mul-
tiplication by a high power of γ eradicates non-initial monomials.

Lemma 3.11. Let F|G be a biflag of M, and let s be the number of distinct proper flats
in F.

(1) If s + k > r, then xF|G γk = 0.

(2) If s + k = r and F is not initial, then xF|G γk = 0.

Proof. The proof of the first part is nearly identical to and simpler than the proof of
the second part. For the second part, as in Lemma 3.9, let l be the largest index for
which Fl ̸= E, and let c /∈ Fl. We proceed by descending induction on s.

The largest possible value of s for a non-initial flag is r − 1. Suppose first that
s = r − 1 and k = 1. If F is not initial, we must have rk Fl = r. Lemma 3.9 then
implies that

xF|G γ = xF|G γc =
∑

Fl∪c⊆F ̸=E
Gl⊇G⊇Gl+1

x(F∪F )|(G∪G) = 0,

since the only flat containing Fl, which has corank 1, and c, which is not in Fl, is E.
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Now suppose that the result is true for some value of s ⩽ r − 1, and consider any
biflag F|G, where F has s − 1 distinct proper flats. We have

xF|G γr−(s−1) = (xF|G γc)γr−s =
∑

Fl∪c⊆F ̸=E
Gl⊇G⊇Gl+1

x(F∪F )|(G∪G)γ
r−s = 0,

where each summand is 0 by the inductive hypothesis because each flag F ∪ F that
arises is not initial and has s distinct proper flats. □

3.4. hr−k-many extended nbc monomials in γkδn−k−1. Lemma 3.11 shows that
many monomials in δn−k−1 are eliminated when one multiplies them by γk. Let us now
show that each one of the hr−k(BC(M)) nbc monomials xF(B)|G(B) of Proposition 3.8
resists multiplication by γk, and gives rise to its corresponding extended nbc monomial
xF+(B)|G+(B) in γkδn−k−1, as introduced in Definition 2.11. We will later see that these
are the only monomials that resist multiplication by γk.

Proposition 3.12. For every nbc basis B with |IA(B)| = k + 1, we have

xF(B)|G(B) γk = xF+(B)|G+(B).

Proof. Recall from Proposition 2.9 that, if we write

S = B − IA(B) = {e1 > · · · > er−k}, and
T = (E − B) − min(E − B) = {er−k+1 < · · · < en−k−1},

then the table of the nbc monomial xF(B)|G(B) is

∅ ⊊ F1 ⊊ · · · ⊊ Fr−k ⊊ E = · · · = E = E
E = E = · · · = E ⊋ Gr−k+1 ⊋ · · · ⊋ Gn−k−1 ⊋ ∅

e1 > · · · > er−k er−k+1 < · · · < en−k−1

,

where Fj = cl(e1, . . . , ej) for j ⩽ r − k and Gj = cl⊥(ej , . . . , en−k−1) for j > r − k. In
particular,

Fr−k = cl(S) and Gr−k+1 = cl⊥(T ).
We write IA(B) = {c1 > c2 > · · · > ck+1}, and multiply xF|G by γc1 , . . . , γck

to
compute

xF|Gγk = xF|Gγc1γc2 · · · γck
.

Since c1 /∈ Fr−k, when we multiply xF|G γc1 , Lemma 3.9 tells us that every resulting
term x(F∪F )|(G∪G) corresponds to a biflat F |G such that Fr−k ∪ c1 ⊊ F ⊊ E. Also,
for such a term to resist further multiplication by γk−1, F ∪ F must be an initial flag
by Lemma 3.11, so rk(F ) = r − k + 1. This implies that F = cl(S, c1); we denote F
by Fr−k+1.

Similarly, since c2 /∈ Fr−k+1, every term in xF|G γc1γc2 that resists further multipli-
cation by γk−2 must introduce Fr−k+2 := cl(S, c1, c2) as the new flat in the flag. Con-
tinuing with this line of reasoning, we see that the nonzero terms in xF|G γc1γc2 · · · γck

are obtained from the table of xF(B)|G(B) between columns r − k and r − k + 1 as

· · · cl(S) ⊊ cl(S, c1) ⊊ · · · ⊊ cl(S, c1, . . . , ck) ⊊ E · · ·
· · · E ⊇ G′

r−k+1 ⊇ · · · ⊇ G′
r ⊇ cl⊥(T ) · · ·

er−k c1 > · · · > ck er−k+1

,

for any choice of coflats G′
r−k+1 ⊇ · · · ⊇ G′

r, each of which is either E or cl⊥(T ), since
r⊥(T ) = r⊥ − 1.

The only freedom we appear to have left is the choice of the unique value of
1 ⩽ i ⩽ k + 1 for which G′

r−k+i−1 = E and G′
r−k+i = cl⊥(T ):
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· · · cl(S, c1, . . . , ci−1) ⊊ cl(S, c1, . . . , ci) · · ·
· · · E ⊋ cl⊥(T ) · · · .

However, for this to be a valid flag, we must have

cl(S, c1, . . . , ci−1) ∪ cl⊥(T ) ̸= E and cl(S, c1, . . . , ci) ∪ cl⊥(T ) = E.

Therefore, we do not have the freedom to choose i; it must be the smallest index for
which cl(S, c1, . . . , ci) ∪ cl⊥(T ) = E.

This precisely matches the description of the extended nbc biflag of B in Defi-
nition 2.11. Thus the unique surviving term in xF(B)|G(B)γc1γc2 · · · γck

is precisely
xF+(B)|G+(B), as we wished to show. □

Example 3.13. Let us return to Example 3.7 and multiply the nbc monomial of
B = 015678b with IA(B) = 016 by γ2 by computing

(xb|E x8b|E x78b|E x578b|E xE|03469a xE|469a xE|69a xE|9) · γ6 · γ1.

This adds two new columns to the middle of the table in Example 3.7, shown in
green. The new entries in the top row must be cl(578b6) = 5678b and cl(578b61) =
1256789ab. The new entries in the bottom row can equal E or 03469a. Since 5678b ∪
03469a ̸= E, and we must have Fi ∪ Gi ̸= E for all i, the first one must be E. Since
1256789ab ∪ 03469a = E, and we must have Fi ∪ Gi+1 ̸= E for some i, the second one
must be 03469a. Thus the only possible table is

∅ b 8b 78b 578b 5678b 1256789ab E E E E E
E E E E E E 03469a 03469a 469a 69a 9 ∅

b 8 7 5 6 1 3 4 9 a
,

and the resulting monomial is the extended nbc monomial of B

xb|E x8b|E x78b|E x578b|E x5678b,E x1256789ab,03469a xE|03469a xE|469a xE|69a xE|9,

corresponding to the extended nbc biflag of Example 2.12.

We have now made some progress towards our proof of Theorem 1.1, which says
that

γkδn−k−1 =
∑

Bnbc basis
| IA(B)|=k+1

xF+(B)|G+(B).

Propositions 3.8 and 3.12 show that all terms in the right hand side of this expression
do arise in γkδn−k−1. Proving that no other terms appear requires significantly more
work; this is the content of Section 4.

4. Upper bound for γkδn−k−1.
Proposition 3.5 shows that the terms xF|G in the canonical expansion of δn−k−1 are
given by the set TM,M⊥ of combinatorially determined tables (F|G, E). Lemma 3.11
shows that multiplication by high powers of γ eradicates many of these monomials.
The main goal of this section will be to characterize those monomials in the canonical
expansion of δn−k−1 that resist multiplication by γk.

Definition 4.1. A monomial xF|G of degree n − k − 1 and the corresponding table
(F|G, E) ∈ TM,M⊥ are said to be resistant if xF|G γk ̸= 0 in the conormal Chow ring
of M.
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We saw in Proposition 3.12 that any nbc monomial does resist multiplication by γk,
and gives rise to its corresponding extended nbc monomial. We will eventually show
in Proposition 4.15 that these are in fact the only resistant monomials, and hence
that deg(γkδn−k−1) = hr−k(BC(M)). This proof will require several steps, which we
carry out in the following subsections.

4.1. The jump sets of a resistant term of δn−k−1. Recall the notion of jump
sets of F|G from Definition 2.4. We write Trk M for the k-th truncation of M.
Lemma 4.2. If the monomial xF|G arises in the canonical expansion of δn−k−1 and
resists multiplication by γk, then

(1) F|G has a unique double jump, and

(2) F and G are complete flags of nonempty flats in Trk M and M⊥, with possible
repetitions.

Proof. Since xF|Gγk is nonzero, the first part of Lemma 3.11 tells us that F contains
s ⩽ r − k distinct proper flats, so | J(F)| = s + 1 ⩽ r − k + 1. Also, since M⊥ has
rank r⊥ + 1 = n − r, we have | J(G)| ⩽ n − r. On the other hand, since a square-
free monomial cannot contain repeated terms, J(F) ∪ J(G) = {0, 1, . . . , n − k − 1}.
Therefore,

n − k ⩽ | J(F) ∪ J(G)| + | J(F) ∩ J(G)| = | J(F)| + | J(G)| ⩽ n − k + 1,

and the number of double jumps is | J(F) ∩ J(G)| ⩽ 1. But F|G has at least one
nonempty gap Dd, which guarantees a double jump d.

The above analysis also implies that F contains s = r − k distinct proper flats —
which must have ranks 1, 2, . . . , r − k by the second part of Lemma 3.11 — and that
G has flats in every rank of M⊥. □

It follows that any table (F|G, E) arising in the canonical expansion of δn−k−1 that
resists multiplication by γk has the form

∅ ⊊ F1 ⊆ · · · ⊆ Fd ⊊ Fd+1 ⊆ · · · ⊆ Fn−k−1 ⊆ E
E ⊇ G1 ⊇ · · · ⊇ Gd ⊋ Gd+1 ⊇ · · · ⊇ Gn−k−1 ⊋ ∅

e1 · · · ed D ed+1 · · · en−k−1

where d is the unique double jump of F|G. We write
D := Dd = E − (Fd ∪ Gd+1) = (Fd+1 − Fd) ∩ (Gd − Gd+1)

for the unique nonempty gap. In every column other than the d-th, one inclusion is
strict and the other one is an equality. From now on, we will also record the nonempty
gap D in the bottom row of the table (F|G; E). This is redundant information, but it
will be useful visually in the proofs that follow.
Remark 4.3. For each index i, the flat Fi contains the bottom row entries below it
and to its left; namely, e1, . . . , ei, and D if i ⩾ d + 1. Similarly, the coflat Gi contains
the bottom row entries below it and to its right; ei, . . . , en−k−1, and D if i ⩽ d.

We continue with two more easy but important properties of the canonical expan-
sion. The first one tells us that the arrival sequence E and the index d of the double
jump completely determine which inclusions are strict in the table of (F|G, E). We
define the descent set and ascent set of E by

Des(E) = {i : ei > ei+1} and Asc(E) = {i : ei < ei+1}.

Lemma 4.4. If i ∈ J(F) − J(G), then ei > ei+1. If i ∈ J(G) − J(F), then ei < ei+1.
Therefore,

J(F) = Des(E) ∪ {0, d} and J(G) = Asc(E) ∪ {d, n − k − 1}.
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Proof. It is clear from the definitions that 0 ∈ J(F) and n−k−1 ∈ J(G). By symmetry,
it is enough to prove the first assertion. Assume for the sake of contradiction that
i ∈ J(F) − J(G) and ei < ei+1, so the table of (F|G, E) contains

· · · Fi ⊊ Fi+1 · · ·
· · · Gi = Gi+1 · · ·
· · · ei < ei+1 · · ·

.

Then the biflat Fi|Gi arrives to the monomial xF|G after the biflat Fi+1|Gi+1 does,
so ei /∈ Fi+1 ∩ Gi+1. This contradicts the fact that ei ∈ Fi ∩ Gi ⊆ Fi+1 ∩ Gi+1. □

Lemma 4.5. If i < j and ei < ej, then ei ̸∈ Gj. If i < j and ei > ej, then ej ̸∈ Fi.

Proof. It suffices to prove the first assertion. A part of the table of (F|G, E) reads

Fi ⊆ · · · ⊆ Fj

Gi ⊇ · · · ⊇ Gj

ei < ej

,

and hence Fi|Gi appears in the term xF|G after Fj |Gj and ei /∈ Fj ∩ Gj . Since ei ∈
Fi ⊆ Fj , we must have ei /∈ Gj . □

4.2. The resistant terms of δn−k−1 are determined by the bottom row of
their table. We now show that any resistant table (F|G, E) is completely determined
by the bottom row of its table, that is, by E , d, and D.

Proposition 4.6. Let (F|G, E), D, and d be as above.
(1) For any x ∈ D, we have

B(x) := {ei+1 | i ∈ J(F) − d} ∪ x is a basis of Trk M, and

B⊥(x) := {ei | i ∈ J(G) − d} ∪ x is a basis of M⊥.

(2) For any x ∈ D, the flags F and G are given by

Fj =
{

cl({ei+1 | i ∈ J(F) − d, i + 1 ⩽ j}) if j ⩽ d,

cl(x ∪ {ei+1 | i ∈ J(F) − d, i + 1 ⩽ j}) if j > d,

Gj =
{

cl⊥(x ∪ {ei | i ∈ J(G) − d, i ⩾ j}) if j ⩽ d,

cl⊥({ei | i ∈ J(G) − d, i ⩾ j}) if j > d.

(3) The ranks of the flags F and G are given by

rk(Fj) = | J(F)<j | and rk⊥(Gj) = | J(G)⩾j |.

The jump sets J(F) and J(G) are given by Lemma 4.4, and hence F and G are
determined by E , d, and D. Thus, the biflag F|G is determined by the arrival sequence
E , the double jump d, and the nonempty gap D.

Proof. Let us treat B(x) as an ordered set, ordered from left to right. If i ∈ J(F)−{d}
then Fi ⊊ Fi+1 and rk(Fi+1) = rk(Fi) + 1 by the first part of Lemma 3.11. Also,
Lemmas 4.4 and 4.5 tell us that ei > ei+1 and ei+1 /∈ Fi. This implies that Fi+1 =
cl(Fi ∪ ei+1), and that ei+1 is independent from the earlier terms in B(x). For i = d,
since x ∈ Fd+1 −Fd by definition, we have that Fd+1 = cl(Fd ∪x) and x is independent
from the earlier terms in B(x). The same argument shows the analogous claims for
B⊥(x). This proves the first and the second parts of the proposition. The third part
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follows from

| J(F)<j | =
{

|( J(F) − d)<j | if j ⩽ d,

|( J(F) − d)<j | + 1 if j > d,
and

| J(G)⩾j | =
{

|( J(F) − d)⩾j | + 1 if j ⩽ d,

|( J(F) − d)⩾j | if j > d.
.

This completes the proof. □

4.3. The resistant terms of δn−k−1 have no mixed biflats. Proposition 4.6
tells us that, in order to describe the tables (F|G, E) arising in the canonical expansion
of δn−k−1 that resist multiplication by γk, we may focus on the bottom row of their
tables, that is, on E , d, and D. We now pursue this analysis further. Call a biflat F |G
mixed if both F and G are proper flats of M and M⊥, respectively.

Proposition 4.7. If the table (F|G, E) arises in the canonical expansion of δn−k−1

and the monomial xF|G resists multiplication by γk, then
(1) its unique double jump is at d = r − k, and
(2) the resulting monomial xF|G has no mixed biflats, and its table is of the form

∅ ⊊ F1 ⊊ · · · ⊊ Fr−k ⊊ E = · · · = E = E
E = E = · · · = E ⊋ Gr−k+1 ⊋ · · · ⊋ Gn−k−1 ⊋ ∅

e1 > · · · > er−k D er−k+1 < · · · < en−k−1

.

For the remainder of this subsection, we write Y for the set E−{e1, . . . , en−k−1}−D
consisting of indices that do not appear in the bottom row of the table of (F|G, E)
when augmented with the entry D.

Example 4.8. Before proving Proposition 4.7, let us illustrate it using Example 2.10.
The graphical matroid of the cube shown in Figure 2 has n + 1 = 12 elements, rank
r + 1 = 7, and corank r⊥ + 1 = 5. We saw in Examples 2.10 and 2.12 that, for k = 2,
one of the resistant tables (F|G, E) in the canonical expansion of δn−k−1 = δ8 is the
nbc monomial of the basis B = 015678b with IA(B) = 016, given by the table

∅ b 8b 78b 578b ⊊ E E E E E
E E E E E ⊋ 03469a 469a 69a a ∅

b 8 7 5 12 3 4 9 a
.

The double jump occurs at d = 4 and we have D = {1, 2} and Y = {0, 6}. For
either x = 1 or x = 2 the flats in F are the closures of the independent sets
b, 8b, 78b, 578b, x578b of M, and the coflats in G are the coclosures of the independent
sets a, 9a, 49a, 349a, x349a of M⊥.

Proof of Proposition 4.7. We first show that min J(G) = d. Suppose otherwise that G
has jumps before d, and let j − 1 < d be the position at which the first one occurs.
Then {0, 1, . . . , j − 2} ∈ J(F), and the table of (F|G, E) reads

F1 ⊊ · · · ⊊ Fj−1 = Fj ⊆ · · · ⊆ Fd ⊊ Fd+1 ⊆ · · · ⊆ Fn−k−1
E = · · · = E ⊋ Gj ⊇ · · · ⊇ Gd ⊋ Gd+1 ⊇ · · · ⊋ Gn−k−1
e1 · · · ej−1 ej · · · ed D ed+1 · · · en−k−1

.

Proposition 4.6 guarantees that {e1, . . . , ej−1} is independent and spans the flat
Fj−1 = Fj of M. Notice that Fj ̸= E, since j < d. Now, Lemma 4.2 tells us that
G is a complete flag of M⊥ with possible repetitions, so the coflat Gj must be a
hyperplane in M⊥, and hence Cj = E − Gj is a circuit of M. But we have that
Gj ⊇ {ej , ej+1, . . . , en−k−1}∪D, which implies that Cj = E−Gj ⊆ {e1, . . . , ej−1}∪Y .
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But {e1, . . . , ej−1} is independent in M, so there must be an element y ∈ Y such that
y ∈ Cj . Then y /∈ Gj , so y ∈ Fj .

Recall from Proposition 4.6 that B⊥(x) := {ei | i ∈ J(G) − d} ∪ x is a basis of M⊥,
so its complement B⊥(x)′ := {ei | i ∈ J(F) − 0} ∪ (D − x) ∪ Y is a basis of M, and
hence

I := {ei | i ∈ J(F)⩽d − 0} ∪ y is independent in M.
Notice that I is a subset of Fd and |I| = | J(F)⩽d − 0| + 1 = | J(F)<d| + 1; this
contradicts the third part of Proposition 4.6, which says that rk(Fd) = | J(F)<d|. We
conclude that G has no jumps before d, that is, G1 = · · · = Gd = E.

We next show that max J(F) = d. Suppose F has jumps after d, and let
j > d be the position at which the first such jump occurs. Since J(F) ∪ J(G) =
{0, 1, . . . , n − k − 1} and we previously showed that 0, 1, . . . , d − 1 /∈ J(G), we must
have J(F) ⊇ {0, 1, . . . , d − 1}. Therefore, the table of (F|G, E) reads

F1 ⊊ · · · ⊊ Fd ⊊ Fd+1 = · · · = Fj ⊊ Fj+1 ⊆ · · · ⊊ Fn−k−1
E = · · · = E ⊋ Gd+1 ⊋ · · · ⊋ Gj = Gj+1 ⊇ · · · ⊋ Gn−k−1
e1 · · · ed D ed+1 · · · ej ej+1 · · · en−k−1

.

This implies that the basis B⊥(x)′ of M contains J := {e1, . . . , ed, ej}∪(D−x), which
must then be independent. But J ⊆ Fj = Fd+1, and rk(Fd+1) = d + 1 because F is a
complete flag of Trk(M), with possible repetitions, by Lemma 4.2. Then

d + 1 ⩾ rk(|J |) = |J | = d + 1 + |D − x|,

which implies D = {x}. It follows that Fd ∪ Gd+1 = E − x, contradicting Lemma
2.2. It follows that F has no jumps after d, that is, Fd+1 = · · · = Fn−k−1 = E. We
conclude that J(F) = {0, 1, . . . , d} and J(G) = {d, d + 1, . . . , n − k}. The first part of
Proposition 4.6 then implies that d = r − k.

The above discussion shows that xF|G has no mixed biflats. Furthermore, Lemma
4.4 tells us that e1 > · · · > ed and ed+1 < · · · < en−k−1. This completes the proof. □

We now strengthen Proposition 4.6: we show that a resistant table (F|G, E) in the
canonical expansion of δn−k−1 is completely determined by the arrival sequence E .

Corollary 4.9. If (F|G, E) be a table arising in the canonical expansion of δn−k−1

such that xF|G resists multiplication by γk, then

Fj |Gj =
{

cl{e1, . . . , ej}|E if j ⩽ r − k,

E| cl⊥{ej , . . . , en−k+1} if j > r − k.

In particular, the biflag F|G is determined uniquely by the arrival sequence E.

Proof. This is a direct consequence of the second part of Proposition 4.6, since J(F) =
{0, 1, . . . , r − k} and J(G) = {r − k, r − k + 1, . . . , n − k}. Note that E also determines
the nonempty gap D = E − (Fr−k ∪ Gr−k+1). □

Although the resistant monomials in δn−k−1 do not contain mixed biflats, note
however that the multiplication by γk may introduce mixed biflats in the canonical
expansion of γkδn−k−1, as we saw in Section 3.4.

4.4. The resistant terms of δn−k−1 are nbc monomials. In order to identify
the resistant terms in the canonical expansion of δn−k−1, we need to recall a few
fundamental facts from the theory of basis activities of a matroid M on a linearly
ordered ground set, as developed by Tutte [22] and Crapo [9].
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E

IA(B) EA(B)
B

P(S) S

IA(S) EA(S)

Figure 3. Activities for an independent S and its greedy completion
to a basis B.

Definition 4.10. For a subset S ⊆ E of the ground set of M, we set
IA(S) :=

{
e ∈ S | there exists a cocircuit C⊥ ⊆ (E − S) ∪ e for which e = min C⊥} ,

EA(S) := {e ∈ E − S | there exists a circuit C ⊆ S ∪ e for which e = min C} .

The following set will play a very important role. We prove that it can be described
in three different but equivalent ways.

Proposition/Definition 4.11. For an independent set S ⊆ E of M, let
P(S) :=

{
e ∈ E − S | there exists a cocircuit C⊥ ⊆ E − S for which e = min C⊥}

=
{

e ∈ E − S | there exists a cocircuit C⊥ ⊆ E − cl(S) for which e = min C⊥}
= lexicographically smallest set such that S ⊔ P(S) is a basis.

Proof. The equivalence of the first and third definitions is shown in [9]. To show the
equivalence of the first two, suppose C⊥ ⊆ E − S is a cocircuit with e = min C⊥. If
we had an element f ∈ C⊥ ∩ cl(S), there would be a circuit C ⊆ S ∪ f containing
f . But then we would have C ∩ C⊥ = {f}, which is impossible by Lemma 2.2, so
C⊥ ⊆ E − cl(S). This proves one inclusion, and the reverse inclusion is trivial. □

The next proposition shows that there is a close relationship between S and the
lexicographically smallest basis B containing it [17, Section 2].

Proposition 4.12. The following holds for any independent subset S ⊆ E of M.
(1) B := S ∪ P(S) is the lexicographically smallest basis of M containing S.
(2) IA(B) = IA(S) ∪ P(S).
(3) EA(B) = EA(S).

In the upcoming arguments, the reader may find it useful to consult Figure 3, which
summarizes Proposition 4.12.

Example 4.13. For the matroid of the pyramid in Figure 1 and S = 15, we have
P(S) = 23 and B = 1235. Then IA(B) = 23, IA(S) = ∅, and EA(B) = EA(S) = 0.

We will make use of the following fact.

Lemma 4.14. Let S be an independent set of M, and let F = cl(S). If G is a hyperplane
of M⊥ satisfying F ∪ G ̸= E, then F ∪ G ∪ P(S) ̸= E as well.

Proof. Proposition 4.12 tells us that B := S ∪P(S) is a basis of M and P(S) ⊆ IA(B).
Thus, for each element p ∈ P(S), we can find a unique cocircuit C⊥(p) ⊆ (E − B) ∪ p
of M for which p = min C⊥

p . Notice that C⊥(p)∩P(S) = {p}. Set H(p) := E −C⊥(p),
a hyperplane of M.

We claim F =
⋂

p∈P(S) H(p). Since each C⊥(p) is contained in E − S we have
S ⊆

⋂
p∈P(S) H(p). Since the intersection of flats is a flat, F = cl(S) ⊆

⋂
p∈P(S) H(p)
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as well. On the other hand, each H(p) is a hyperplane, so the submodular inequality
gives

rk
( ⋂

p∈P(S)
H(p)

)
⩽ rk(M) − |P(S)| = |S| = rk(F )

which proves the claim.
Now, the complement C := E − G is a circuit of M. Let D = E − (F ∪ G) ̸= ∅.

Then

D = (E − F ) ∩ (E − G) =
( ⋃

p∈P(S)
C⊥(p)

)
∩ C =

⋃
p∈P(S)

(C⊥(p) ∩ C).

Since D is nonempty, C⊥(p) ∩ C ̸= ∅ for some p. Since C⊥(p) is a cocircuit and C
is a circuit, C⊥(p) ∩ C – and hence D – contains at least one element q ̸= p. Since
C⊥(p) ∩ P(S) = {p}, it follows that q /∈ P(S) so q /∈ F ∪ G ∪ P(S), as desired. □

In Proposition 4.7, we showed that the terms of the canonical expansion of δn−k−1

that resist multiplication by γk are given by tables (F|G, E) of the form

∅ ⊊ F1 ⊊ · · · ⊊ Fr−k ⊊ E = · · · = E = E
E = E = · · · = E ⊋ Gr−k+1 ⊋ · · · ⊋ Gn−k−1 ⊋ ∅

e1 > · · · > er−k D er−k+1 < · · · < en−k−1

.

The following proposition describes precisely which tables arise.

Proposition 4.15. Let S be the independent set {e1 > · · · > er−k} of M, and let B
be the basis B = S ⊔ P(S) of M in Proposition 4.12.

(1) IA(S) = EA(S) = ∅.
(2) EA(B) = ∅, so B is a nbc basis of M.
(3) IA(B) = P(S) and | IA(B)| = k + 1.
(4) ei = min Fi for 1 ⩽ i ⩽ r − k.
(5) ei = min(Gi − P(S)) for r − k + 1 ⩽ i ⩽ n − k − 1.
(6) F|G = F(B)|G(B) and xF|G is the nbc monomial of the nbc basis B, as in

Proposition 2.9.

Example 4.16. For the cube graph of Figure 2 and k = 2, let us revisit the resistant
monomial

xb|E x8b|E x78b|E x578b|E xE|03469a xE|469a xE|69a xE|9.

The arrival sequence E = (b, 8, 7, 5; 3, 4, 9, a) was computed in Example 4.8. We
have S = b875, and its lexicographically smallest completion to a basis is given
by P(S) = 016. Then B = 015678b is indeed a nbc basis with IA(B) = 016 . Con-
ditions (3) and (4) are easily checked directly, and F|G = F(B)|G(B) as described in
Example 2.10.

We prepare the proof of Proposition 4.15 with some technical lemmas.

Lemma 4.17. Let (F|G, E) be as in Proposition 4.15.
(1) For each 1 ⩽ i ⩽ r − k, there is an index r − k + 1 ⩽ j ⩽ n − k such that

ei = max
(
E − (Fi−1 ∪ Gj)

)
.

It is the smallest index j ⩾ r − k + 1 such that ej > ei, or j = n − k if there
is no such index.
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E

D Y

IA(B)
B

x P(S) S = {e1, . . . , er−k} B⊥ − x = {er−k+1, . . . , en−k−1}

IA(S) = ∅ EA(S) = ∅

Figure 4. Activities and the partition of E.

(2) For each r − k + 1 ⩽ j ⩽ n − k − 1, there is an index 0 ⩽ i ⩽ r − k such that

ej = max
(
E − (Fi ∪ Gj+1)

)
.

It is the largest index i ⩽ r − k such that ei > ej, or i = 0 if there is no such
index.

Proof. This is a straightforward restatement of Proposition 3.5, since we have deter-
mined the table for (F|G, E) in Proposition 4.7. □

Lemma 4.18. Every element of the nonempty gap D is smaller than every ei.

Proof. The smallest ei is either er−k or er−k+1. If er−k < er−k+1, then Lemma 4.17
implies that

er−k = max
(
E − (Fr−k−1 ∪ Gr−k+1)

)
⩾ max D,

where we used Fr−k−1∪Gr−k+1 ⊆ Fr−k∪Gr−k+1 = E−D. Since D∩{e1, . . . , en−k−1}
is empty, the inequality is strict. If er−k > er−k+1, then a similar argument
shows er−k+1 > max D. □

The first part of Proposition 4.6 tells us that S is independent in M, and the first
part of Proposition 4.12 tells us that the set B := S ⊔ P(S) is a basis: in particular,
|P(S)| = k+1. Our next result relates P(S) with the partition E = {e1, . . . , en−k−1}⊔
D ⊔ Y . We illustrate this in Figure 4, which is a refinement of Figure 3 in the case
IA(S) = EA(S) = ∅.

Lemma 4.19. For x = min(E − B) ∈ D, we have

E − {e1, . . . , en−k−1} = D ⊔ Y = P(S) ⊔ {x} .

Proof. We first show that P(S) ⊆ D⊔Y . By way of a contradiction, suppose ei ∈ P(S)
for some i. Since e1, . . . , er−k ∈ S, we must have i ⩾ r − k + 1. By Definition 4.11,
there is a cocircuit C⊥ for which ei = min C⊥ and C⊥ ⊆ E − cl(S) = E − Fr−k. Also,
Lemma 4.17 tells us that

ei = max(E − Fj) ∩ (E − Gi+1) for some j ⩽ r − k.

However, since ei /∈ Gi+1 by Lemma 4.5, we have

(E − Fj) ∩ (E − Gi+1) ⊇ (E − Fr−k) ∩ (E − Gi+1) ⊇ C⊥ ∩ (E − Gi+1) ∋ ei.

Therefore, we must also have ei = max
(
(E − Gi+1) ∩ C⊥). Since ei = min C⊥ we

must have (E −Gi+1)∩C⊥ = {ei}, and hence |Gi+1 ∪ (E −C⊥)| = n; this contradicts
Lemma 2.2.

Next we show that there must be an element x ∈ D that is not in P(S). To do
that, we invoke Lemma 4.14. Since cl(S) ∪ Gr−k+1 = Fr−k ∪ Gr−k+1 ̸= E, we must
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have some element x /∈ Fr−k ∪ Gr−k+1 ∪ P(S). However, x /∈ Fr−k ∪ Gr−k+1 means
that x ∈ D.

We observe that |D ⊔ Y | = |E| − |{e1, . . . , en−k−1}| = (n + 1) − (n − k − 1) = k + 2,
while |P(S)| = |B| − |S| = (r + 1) − (r − k) = k + 1. Since our x is not in P(S), the
inclusion P(S) ⊔ {x} ⊆ D ⊔ Y must in fact be an equality.

Finally, Lemma 4.18 and E − B = {x, er−k+1, . . . , en−k−1} give x = min(E −
B). □

Lemma 4.20. We have the inclusion Y ⊆ Gr−k+1.

Proof. We have that Y ⊆ Fr−k ∪ Gr−k+1 = E − D. If the claim were not true, there
would be an element y ∈ Y such that y ∈ Fr−k = cl(S), so S ∪ y would be dependent.
But Lemma 4.19 would then imply that y ∈ Y ⊆ P(S), contradicting the fact that
S ∪ P (S) is a basis. □

We now prove our description of the resistant terms in the canonical expansion of
δn−k−1.

Proof of Proposition 4.15. We prove parts (4), (5), (1), (2), (3), (6), in that order.
(4) Let 1 ⩽ i ⩽ r − k. Lemma 4.17 provides a j ⩾ r − k + 1 for which ei =

max
(
E − (Fi−1 ∪ Gj)

)
. We claim that

Fi ∪ Gj ⊆ {e1, . . . , ei} ⊔ {ej , ej+1, . . . , en−k−1} ⊔ D ⊔ Y.

In view of the decomposition E = {e1, . . . , en−k−1} ⊔ D ⊔ Y , this amounts to
checking that eh ̸∈ Fi ∪ Gj for i < h < j, which follows from Lemma 4.4.

Now assume, for the sake of contradiction, that min Fi = a < ei. Since
e1 > · · · > ei and en−k−1 > · · · > ej > ei, we must have a ∈ D ⊔ Y =
P(S) ⊔ x, by Lemma 4.19. However, D ∩ Fi = ∅ and a ∈ Fi, so a cannot be
x. Additionally, P(S) is independent from S and a ∈ Fi ⊆ cl(S), so a cannot
be in P(S) either. We conclude ei = min Fi for i ⩽ r − k.

(5) Let r − k + 1 ⩽ j ⩽ n − k − 1. As before, Lemma 4.17 provides a 0 ⩽ i ⩽ r − k
for which

Fi ∪ Gj ⊆ {e1, . . . , ei} ⊔ {ej , ej+1, . . . , en−k−1} ⊔ D ⊔ Y.

We do have ej ∈ Gj − P(S) by Lemma 4.19. Now assume, for the sake of
contradiction, that min

(
Gj − P(S)

)
= a < ej . Since e1 > · · · > ei > ej and

en−k−1 > · · · > ej , we must have a ∈ D ∪ Y . But a /∈ P(S) by definition, and
D ∩ Gj = ∅ so a ̸= x. The desired result follows.

(1) If we had a ∈ EA(S), then S ∪ a would contain a circuit C with a = min C.
For the largest i with ei ∈ C, we would then have C − a ⊆ Fi. Since C is
a circuit and Fi is a flat, this would imply that a ∈ Fi, contradicting that
ei = min Fi as shown in (4). Thus EA(S) = ∅.

Suppose we had ei ∈ IA(S) for some 1 ⩽ i ⩽ r − k. Then ei ∈ IA(B)
by Proposition 4.12, so there is a cocircuit C⊥ ⊆ (E − B) ∪ ei =
{er−k+1, . . . , en−k−1, x, ei} with ei = min C⊥. By Lemma 4.18, this means
that x /∈ C⊥. Therefore C⊥ − ei ⊆ Gr−k+1. In fact, more strongly,
C⊥ − ei ⊆ Gj for the smallest j ⩾ r − k + 1 such that ej ∈ C⊥. But in
the dual matroid M⊥, C⊥ is a circuit and Gj is a flat, which implies that
ei ∈ cl⊥(C⊥ − ei) ⊆ cl⊥(Gj) = Gj . This contradicts Lemma 4.5 since i < j
and ei < ej .

(2) Proposition 4.12 and (1) tell us that B is a basis and EA(B) = EA(S) = ∅.
(3) Proposition 4.12 and (1) tell us that IA(B) = P(S).
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(6) By (2) and (3), we have
B − IA(B) = S = {e1 > · · · > er−k}

and Lemma 4.19 tells us that
E − B − min(E − B) = {er−k+1 < · · · < en−k−1}

Therefore, by Corollary 4.9, the flags F and G are precisely the flags F(B)
and G(B) of the nbc biflag of B, as described in Proposition 2.9. □

Corollary 4.21. Let (F|G, E) be a table arising in the canonical expansion of δn−k−1

such that xF|G resists multiplication by γk. Then the arrival sequence E is determined
uniquely by the biflag F|G.

Proof. The arrival sequence E is determined by (4) and (5) of Proposition 4.15. □

We are finally ready to prove our description of the canonical expansion of γkδn−k−1

into monomials.

Proof of Theorem 1.1. Every resistant table (F|G, E) in the canonical expansion of
δn−k−1 gives a nbc monomial xF(B)|G(B) by the last part of Proposition 4.15. Every
such monomial does appear in this expansion by Proposition 3.8. Furthermore, it
appears only once by Corollary 4.21. Therefore, we have

γkδn−k−1 =
∑

Bnbc basis
| IA(B)|=k+1

γkxF(B)|G(B).

The desired formula for γkδn−k−1 then follows by Proposition 3.12. □
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