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On the geometry of flag Hilbert–Poincaré
series for matroids

Lukas Kühne & Joshua Maglione

Abstract We extend the definition of coarse flag Hilbert–Poincaré series to matroids; these
series arise in the context of local Igusa zeta functions associated to hyperplane arrangements.
We study these series in the case of oriented matroids by applying geometric and combinatorial
tools related to their topes. In this case, we prove that the numerators of these series are
coefficient-wise bounded below by the Eulerian polynomial and equality holds if and only if all
topes are simplicial. Moreover this yields a sufficient criterion for non-orientability of matroids
of arbitrary rank.

1. Introduction
The flag Hilbert–Poincaré series associated to a hyperplane arrangement, defined
in [19], is a rational function in several variables connected to local Igusa zeta func-
tions [6]. In fact, polynomial substitutions of the variables of the flag Hilbert–Poincaré
series also yield motivic zeta functions associated to matroids [17]; see [25] for the
topological analog. There are also substitutions yielding so-called ask zeta functions
associated to certain modules of matrices [23]; see [19, Prop. 4.8]. The analytic and
arithmetic properties of these zeta functions are, therefore, heavily influenced by the
combinatorics of the flag Hilbert–Poincaré series. Here, we bring in combinatorial
tools to better understand features of this series.

We consider a specialization in variables Y and T , called the coarse flag Hilbert–
Poincaré series, which seems to have remarkable combinatorial properties. In [19], it
was shown that for most Coxeter hyperplane arrangements, the numerator of this
specialization at Y “ 1 is equal to an Eulerian polynomial. We generalize this to the
setting of oriented matroids, a combinatorial abstraction of the face structure deter-
mined by real hyperplane arrangements. We show that the numerator can be better
understood from the geometry of the topes, which are analogs of the chambers for real
hyperplane arrangements. This settles a question by Voll and the second author [19,
Quest. 1.7] for the case of real arrangements, asking about which properties of a
hyperplane arrangement guarantee the equality to Eulerian polynomials mentioned
above.
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1.1. Flag Hilbert–Poincaré series for matroids. Let M be a matroid, with
ground set E, and LpMq its lattice of flats, with bottom and top elements denoted by
0̂ and 1̂, respectively. Relevant definitions concerning matroids and oriented matroids
are given in Section 2. Let µM : LpMq Ñ Z be the Möbius function on LpMq, where
µM p0̂q “ 1 and µM pXq “ ´

ř

X1ăX µM pX 1q. A well-studied invariant of a matroid
M is the Poincaré polynomial

πM pY q “
ÿ

XPLpMq

µM pXqp´Y qrpXq,

where rpXq is the rank of X in LpMq, viz. one less than the maximum over the number
of elements of all flags from 0̂ to X. If M is realized by a hyperplane arrangement A,
then its Poincaré polynomial captures topological and algebraic properties of A [21].

For a poset P let ∆pP q be the set of flags of P , and let ∆kpP q Ď ∆pP q be the set
of flags of size k. If P has a bottom element 0̂ and a top element 1̂ set P “ P zt0̂, 1̂u.
The flag Poincaré polynomial associated to F “ pX1 ă ¨ ¨ ¨ ă Xℓq P ∆pLpMqq, with
ℓ ě 0, is the product of Poincaré polynomials on the minors determined by F ,

πF pY q “

ℓ
ź

k“0
πM{Xk|Xk`1 pY q,

where X0 “ 0̂ and Xℓ`1 “ 1̂. Here, M{Xk is the contraction of Xk Ď E from M ,
and M |Xk`1 is the restriction of M to Xk`1 Ď E. The lattice LpM{Xk|Xk`1q is
isomorphic to the interval rXk, Xk`1s in LpMq.

Definition 1.1. The coarse flag Hilbert–Poincaré series of a matroid M is

cfHPM pY, T q “
1

1 ´ T

ÿ

F P∆pLpMqq

πF pY q

ˆ

T

1 ´ T

˙|F |

“
NM pY, T q

p1 ´ T qrpMq
.

We call NM pY, T q the coarse flag polynomial:

NM pY, T q “
ÿ

F P∆pLpMqq

πF pY qT |F |p1 ´ T qrpMq´1´|F |.

We call a matroid M orientable if there exists an oriented matroid whose underlying
matroid is M . An orientable matroid M is simplicial if M has an oriented matroid
structure such that the face lattice of every tope is a Boolean lattice—equivalently,
for real hyperplane arrangements every chamber is a simplicial cone; see details in
Section 2.2. For example, all Coxeter arrangements are simplicial.

1.2. Main results. For rational polynomials fpT q “
ř

kě0 akT k and gpT q “
ř

kě0 bkT k, we write fpT q ď gpT q if ak ď bk for all k ě 0. We write fpT q ă gpT q to
mean fpT q ď gpT q and fpT q ‰ gpT q.

The Eulerian polynomials EA
r`1pT q and EB

r`1pT q are equal to the h-polynomials
of the barycentric subdivisions of the boundaries of the r-dimensional simplex and
the cross-polytope, respectively [22, Thm. 11.3]. The Eulerian polynomials are also
defined by Coxeter-theoretic descent statistics [22, Sec. 11.4]. In [19, Thm. D], it
was shown that for all Coxeter arrangements A of rank r, without an E8-factor,
NAp1, T q{πAp1q “ EA

r pT q. The next theorem generalizes this result.

Theorem 1.2. Let M be an orientable matroid of rank r. Then

EA
r pT q ď

NM p1, T q

πM p1q
,(1)
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and equality holds if and only if M is simplicial. Moreover,

NM p1, T ´1q “ T r´1NM p1, T q.

The key insight in the proof for Theorem 1.2 is that in the orientable case NM p1, T q

is a sum of h-polynomials. Each of the summands is determined by the topes of M ;
see Proposition 4.3. Theorem 1.2 suggests that NM pY, T q is a “Y -twisted” sum of
h-polynomials of the topes, and understanding this could address the nonnegativity
conjecture of [19] in the orientable case.

A byproduct of Theorem 1.2 is a sufficient condition for non-orientability of ma-
troids. The rank 3 case yields an inequality concerning the number of rank 2 flats
above every element in M .

Corollary 1.3. Assume M is a simple matroid with rank 3, and suppose c is the
number of rank 2 flats of M and s the sum of their sizes. If 3pc ´ 1q ă s, then M is
non-orientable.

It is known that the Fano matroid is non-orientable, which is also shown by Corol-
lary 1.3 since it has seven rank 2 flats, each containing three elements. There are a
number of sufficient conditions for the non-orientability of matroids. Based on ex-
periments using the database of non-orientable matroids [20], we report that the
condition in Corollary 1.3 is independent from the sufficient condition in [7] for rank
3 matroids; see also [4, Prop. 6.6.1(i)]. Moreover, Corollary 1.3 is related to [8, Corol-
lary 2.6] where Cuntz and Geis proved that a rank 3 arrangement is simplicial if and
only if its underlying matroid satisfies 3pc ´ 1q “ s in the notation above.

1.3. Further questions and conjectures. The lower bound in (1) raises the
following question. How large or how small can the coefficients of the numerator of
cfHPM p1, T q{πM p1q be? All of our results and computations suggest the following.(1)

Conjecture 1.4. For all matroids M of rank r ě 3,

p1 ` T qr´1 ă
NM p1, T q

πM p1q
ă EB

r pT q.

We note that EA
1 pT q “ EB

1 pT q “ 1 and EA
2 pT q “ EB

2 pT q “ 1`T , and all matroids of
rank 1 or 2 are both orientable and simplicial. For orientable matroids, the lower bound
of Conjecture 1.4 holds by Theorem 1.2. Moreover, the upper bound in Conjecture 1.4
is reminiscent of similar “f -vector” bounds proved in [15, 26].

Theorem 1.5. (1) If Conjecture 1.4 holds, then the bounds are sharp.
(2) Conjecture 1.4 holds for all matroids of rank 3. Moreover for all orientable

matroids, the upper bound holds for the linear term of the polynomials, so
Conjecture 1.4 holds for all orientable matroids of rank 4.

In fact, more is known to hold for NM pY, T q in the case where rpMq ď 3. We
prove, in Proposition 3.2, that the numerator is nonnegative, palindromic, and when
Y “ 1 real-rooted. In particular, [19, Conjecture E] holds for all central hyperplane
arrangements with rank at most 3. We are also interested in whether or not these
three properties hold for the numerator of NM pY, T q for all matroids of rank larger
than 3. For oriented matroids of rank 4, the polynomial NM p1, T q is real-rooted, which
follows from Theorem 1.2. This raises the following general question.

Question 1.6. Is the polynomial NM p1, T q real-rooted for all matroids M?

(1)The lower bound in Conjecture 1.4 is proved in [10].
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Brenti and Welker asked whether the h-polynomial of the barycentric subdivision of
a general polytope is real-rooted [5]. In the case of real hyperplane arrangements and
their associated zonotopes, this question is related to Question 1.6 via our geometric
interpretation of NM p1, T q although the precise connection is not yet well understood.

1.4. Other matroid invariants. Given the large number of polynomial matroid
invariants, we consider NM pY, T q in this larger context. The invariant NM pY, T q is
a valuative matroid invariant [14, Sec. 14.3], which means that it behaves well with
respect to subdivisions of the matroid base polytope [9]. To see this, observe that

NM pY, T q “ πM pY qp1 ´ T qrpMq´1 `
ÿ

XPLpMq

πM |XpY qT p1 ´ T qrpXq´1NM{XpY, T q.

Using an argument similar to those in Section 8 of [1], NM pY, T q is a convolution of
the Poincaré polynomial, and by [1, Thm. C], it is a valuative matroid invariant. So
the coarse flag polynomial is amenable to techniques recently described by Ferroni and
Schröter in their preprint [14], and it is a specialization of the universal G-invariant
as proved in [9, Thm. 1.4].

Because NM pY, T q is a convolution of the Poincaré polynomial or, similarly, the
characteristic polynomial, we briefly consider other invariants that are also similarly
convoluted—such a list appears in Table 1 of [1]. As NM pY, T q and the motivic zeta
function from [17] are two bivariate specializations of the flag Hilbert–Poincaré se-
ries, the two are certainly related but are distinct. The polynomial NM pY, T q is not
a specialization of the Tutte polynomial of M since NM pY, T q does not satisfy a
deletion-contraction relation. The Kazhdan–Lusztig polynomial, defined in [12], does
not seem to be a specialization of the coarse flag polynomial, and similarly Eur’s
volume polynomial [13, Def. 3.1] does not seem to specialize to the coarse flag poly-
nomial. The precise relationship between these two polynomials and the coarse flag
polynomial is not entirely clear at this stage.

1.5. Structure of the article. We give definitions for matroids and oriented
matroids in Section 2. We prove Theorem 1.2 in Section 4, and Theorem 1.5 is proved
in Section 5. Section 3 is devoted to general matroids of rank 3. There we also describe
a pair of real hyperplane arrangements with the same coarse flag polynomial and
different underlying matroids (Remark 3.3), answering a question of Voll and the
second author [19].

2. Preliminaries
We let N and N0 be the set of positive and nonnegative integers respectively. For
n P N, set rns “ t1, . . . , nu and rns0 “ rns Y t0u.

2.1. Matroids. Let E be a finite set, called the ground set and 2E its power set. A
matroid M is a pair pE, Lq with L Ď 2E its set of flats satisfying:

(1) E P L, that is E is a flat,
(2) if X, X 1 P L are flats then X X X 1 P L is also a flat, and
(3) if X P L is a flat then each element of EzX is in precisely one of the flats

that covers X, that is the minimal flats strictly containing X.
Ordering the flats by inclusion gives the set of flats L the structure of a poset, called
the lattice of flats of the matroid M .

One of the main motivations of matroids comes from linear algebra. For a finite set
of hyperplanes H “ tHe | e P Eu in an F-vector space V , the associated intersection
poset LpHq :“ t

⋂
ePS He | S Ď Eu is a poset ordered by reverse inclusion. The pair

pH, LHq is a matroid which is called an F-linear matroid. A matroid M “ pE, Lq is
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called realizable over a field F if there exists an F-linear matroid pH, LHq for some set
of hyperplanes H “ tHe | e P Eu with L “ LpHq as posets. For example, the free
matroid Un,n “ prns, 2rnsq is realized by the coordinate hyperplanes over an arbitrary
field F since each S Ď rns is in one-to-one correspondence with an intersection of
hyperplanes.

Ordering the flats by inclusion turns L into a ranked lattice. Let LkpMq be the
set of all flats of rank k for any k ě 0. The rank of E is the rank of the matroid
which we denote by rpMq. Given a matroid M we denote its lattice of flats by LpMq.
If L0pMq “ t∅u and L1pMq contains only singletons, then M is a simple matroid.
For each matroid M , there is a unique simple matroid simpMq such that LpMq –

LpsimpMqq.
We define two operations on matroids: restriction and contraction relative

to a flat. For X P LpMq, the restriction of M to X is the matroid M |X :“
pX, tX 1 P LpMq | X 1 Ď Xuq. The contraction of X from M is the matroid
M{X :“ pEzX, tX 1zX | X 1 P LpMq, X Ď X 1uq.

2.1.1. Uniform matroids and projective geometries. We recall two families of matroids
which will be important in Section 5. The first is the family of uniform matroids Ur,n

for all n ě r ě 1. The ground set is rns and the flats of Ur,n different from rns

comprise all of the k-element subsets of rns for k P rr ´ 1s0. The second family of
matroids is the projective geometry PGpr ´ 1, qq for r P N and q a prime power. The
ground set is the set of 1-dimensional subspaces of Fr

q, and the flats are the subspaces
of Fr

q. It is known that uniform matroids are orientable and projective geometries are
non-orientable for r ě 3.

2.2. Oriented matroids. Our notation and terminology for oriented matroids
closely follows [4]. We define oriented matroids by their set of covectors. These are
“vectors” in symbols `, ´, and 0, abstracting how a real hyperplane partitions
the vector space into three sets. Each covector describes a cone relative to each
hyperplane. For X P t`, ´, 0uE , let ´X be defined by replacing ` with ´ and vice
versa, keeping the 0 symbol unchanged. For X, Y P t`, ´, 0uE , define X ˝ Y via

pX ˝ Y qe “

#

Xe if Xe ‰ 0,

Ye if Xe “ 0.

Lastly, the separation set of X and Y is SpX, Y q “ te P E | Xe “ ´Ye ‰ 0u. A subset
C Ď t`, ´, 0uE is a set of covectors of an oriented matroid if C satisfies

(1) 0̂C :“ p0, . . . , 0q P C,
(2) if X P C, then ´X P C,
(3) if X, Y P C, then X ˝ Y P C,
(4) if X, Y P C and e P SpX, Y q, then there exists Z P C such that Ze “ 0 and

Zf “ pX ˝ Y qf “ pY ˝ Xqf for all f P EzSpX, Y q.
The pair M “ pE, Cq is an oriented matroid with ground set E and covectors C.

The face lattice relative to pE, Cq, denoted by FpCq, is the set of covectors together
with a (unique) top element 1̂C partially ordered by the following relation. For X, Y P

C, let X ď Y if Xe P t0, Yeu for all e P E. The maximal covectors of FpCq are called
topes, and the set of all topes is denoted by T pCq Ď C.

We define the zero map z : C Ñ 2E sending X to te P E | Xe “ 0u. The image
zpCq Ď 2E satisfies the lattice of flats conditions in Section 2.1, and therefore, pE, zpCqq

is a matroid [4, Prop. 4.1.13]. We write LpMq for the lattice of flats of the underlying
matroid for M . A matroid M “ pE, Lq is orientable if there exists an oriented matroid
pE, Cq with underlying matroid M .
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3. Matroids of rank 3
We explicitly determine the coarse flag Hilbert–Poincaré series for matroids of rank
not larger than 3. Since NM pY, T q depends only on LpMq, it follows that NM pY, T q “

NsimpMqpY, T q. First we require the next lemma, which follows from the definition of
the Möbius function.

Lemma 3.1. Let M be a simple rank 3 matroid on E “ rns. Let c be the number of
rank 2 flats of M and s the sum of their sizes. Then

πM pY q “ 1 ` nY ` ps ´ cqY 2 ` p1 ` s ´ n ´ cqY 3

“
`

1 ` pn ´ 1qY ` p1 ` s ´ n ´ cqY 2˘ p1 ` Y q.

Proposition 3.2. For a simple rank 3 matroid M with ground set of size n, let c be
the number of rank 2 flats of M and s the sum of their sizes. Then

NM pY, T q “ πM pY q ` φM pY qT ` Y 3πM pY ´1qT 2,

where

φM pY q “ n ` c ´ 2 ` p2s ´ n ` cqY ` p2s ´ n ` cqY 2 ` pn ` c ´ 2qY 3.

Proof. Recall the formula for the uniform matroid U2,m of rank 2 on rms,

πU2,m
pY q “ p1 ` Y qp1 ` pm ´ 1qY q.

We first determine the contribution from the flags of size 1. For X P L1pMq, let mX

be the number of rank 2 flats containing X. Since M has rank 3, it follows that
ÿ

XPLpMq

πM{XpY qπM |XpY q “ p1 ` Y q2
ÿ

XPL2pMq

p1 ` p|X| ´ 1qY q

` p1 ` Y q2
ÿ

XPL1pMq

p1 ` pmX ´ 1qY q

“ p1 ` Y q2pn ` c ` p2s ´ n ´ cqY q.

For all maximal flags F , πF pY q “ p1 ` Y q3, so

NM pY, T q “ πM pY qp1 ´ T q2 ` p1 ` Y q2pn ` c ` p2s ´ n ´ cqY qpT ´ T 2q

` sp1 ` Y q3T 2.

Using Lemma 3.1, the coefficient of T , as a polynomial in Y , is equal to φM pY q, and
the coefficient of T 2 is

1 ` s ´ n ´ c ` ps ´ cqY ` nY 2 ` Y 3 “ Y 3πM pY ´1q. □

Remark 3.3. With Proposition 3.2, we answer a question of Voll and the second
author [19, Quest. 6.2], about whether there exists a distinct pair of arrangements
with the same coarse flag polynomial. We describe a pair A and B of real arrangements
in Figure 1 which we found in the database of [2] and are given by:

A : xyzpx ` yqpx ´ yqpx ` 2yqpx ` zqpy ` zqpx ` y ` zq “ 0,

B : xyzpx ` yqpx ` 2yqpx ´ 2yqpx ` zqp2y ` zqp2x ` 2y ` zq “ 0.

They both contain nine hyperplanes with c “ 15 and s “ 39 using the above notation.
The arrangement A has exactly two planes with three lines of intersection, whereas B
has exactly one such plane, so they are nonequivalent.
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(A) The arrangement A. (B) The arrangement B.

Figure 1. Two projectivized pictures of the arrangements A and B.

Corollary 3.4. If M is a simple matroid of rank not larger than 3, then NM pY, T q

has nonnegative coefficients and satisfies

NM pY ´1, T ´1q “ Y rpMqT rpMq´1NM pY, T q.

Moreover, the polynomial NM p1, T q is real-rooted.

Proof. This is clear if rpMq “ 1 as we assume that M is a simple matroid. If M has
rank 2, then M – U2,n, where n is the size of the ground set of M . Then,

NU2,n pY, T q “ p1 ` Y qp1 ` pn ´ 1qY q ` p1 ` Y qpn ´ 1 ` Y qT,

which satisfies the three properties.
If rpMq “ 3, then from Proposition 3.2, NM pY, T q satisfies

NM pY ´1, T ´1q “ Y ´3T ´2NM pY, T q.

The nonnegativity of the coefficients follows if 2s ´ n ` c ě 0. Since every element
of the ground set is contained in some rank 2 flat, it follows that 2s ´ n ě 0. Thus,
NM pY, T q has nonnegative coefficients. The discriminant of NM pY, T q as a polynomial
in T is

`

pc ` nq2p1 ´ Y q2 ´ 4sp1 ´ pc ` 1qY ` Y 2q
˘

p1 ` Y q4,

which is positive at Y “ 1. □

Lemma 3.5. For all matroids M with rank 3,

p1 ` T q2 ă
NM p1, T q

πM p1q
ă EB

3 pT q “ 1 ` 6T ` T 2.

Proof. Without loss of generality, M is a simple matroid. By Proposition 3.2,

NM p1, T q

πM p1q
“ 1 `

ˆ

2 `
4pc ´ 1q

s ´ pc ´ 1q

˙

T ` T 2,(2)

where c “ |L2pMq| and s “
ř

XPL2pMq |X|. Since s ě 2c,

0 ă
4pc ´ 1q

s ´ pc ´ 1q
ă 4. □

We note that equation (2) together with Theorem 1.2 proves Corollary 1.3.
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4. Oriented matroids
Central to the proof of Theorem 1.2 is the face lattice of an oriented matroid M “

pE, Cq. Recall from Section 2.2 that C is the set of covectors, FpCq the face lattice,
T pCq the set of topes, and z : C Ñ 2E the zero map.

For a poset P , let p∆pP q, resp. p∆kpP q, be the set of nonempty flags, resp. flags of
length k, ending at a maximal element of P .

A key result that will be applied multiple times for our proof of Theorem 1.2 is the
Las Vergnas–Zaslavsky Theorem.

Theorem 4.1 ([4, Theorem 4.6.1]). Let M “ pE, Cq be an oriented matroid. Then
|T pCq| “ πM p1q.

Lemma 4.2. Let M “ pE, Cq be an oriented matroid of rank r. Then for all k P rrs,
ˇ

ˇ

ˇ

p∆kpFpCqq

ˇ

ˇ

ˇ
“

ÿ

F P∆k´1pLpMqq

πF p1q.

Proof. We prove this by induction on k, where the case k “ 1 is Theorem 4.1, so we
assume it holds for some k ě 1.

For X P LpMq, the matroids M |X and M{X are orientable. The set of covectors
of M{X is C{X :“

␣

C|EzX : C P C, X Ď zpCq
(

, and the set of covectors of M |X is
C|X :“ tC|X : C P Cu. Then by induction

ÿ

F P∆kpLpMqq

πF p1q “
ÿ

XPLpMq

ÿ

F 1P∆k´1pLpM |Xqq

πM{Xp1qπF 1 p1q

“
ÿ

XPLpMq

πM{Xp1q

ˇ

ˇ

ˇ

p∆kpFpC|Xqq

ˇ

ˇ

ˇ

“
ÿ

XPLpMq

|T pC{Xq|

ˇ

ˇ

ˇ

p∆kpFpC|Xqq

ˇ

ˇ

ˇ
.

(3)

The last equation in (3) follows from Theorem 4.1.
Fix X P FpMq. The set of topes T pC{Xq is canonically in bijection with the

set tC P C : zpCq “ Xu. Hence, the set T pC{Xq ˆ p∆kpFpC|Xqq determines a flag in
p∆k`1pFpCqq beginning with a face whose zero set is X. More precisely, for C P T pC{Xq

and F “ pC1 ă ¨ ¨ ¨ ă Ckq P p∆kpFpC|Xqq, we define a flag pC 1 ă C 1
1 ă ¨ ¨ ¨ ă C 1

kq P

p∆k`1pFpCqq such that

C 1
e “

#

Ce e P EzX,

0 e P X,

and for i P rks,

pC 1
iqe “

#

Ce e P EzX,

pCiqe e P X.

Lastly, the number of flags in p∆k`1pFpCqq beginning with a face whose zero set is
X P LpMq is |T pC{Xq|

ˇ

ˇ

ˇ

p∆kpFpC|Xqq

ˇ

ˇ

ˇ
. Hence, by (3), the lemma holds. □

For a finite simplicial complex Σ, we write fpΣq :“ pf0, . . . , fdq P Nd`1
0 for the

f -vector of Σ, where fk is the number of k-subsets in Σ—equivalently, the number of
pk ´ 1q-dimensional faces. Let fpΣ; T q “

řd
k“0 fkT k be the f -polynomial of Σ, and

let hpΣ; T q :“ p1 ´ T qdfpΣ; T {p1 ´ T qq, which is the h-polynomial associated to Σ.
The coefficients of hpΣ; T q yield the h-vector hpΣq of Σ.
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For a tope τ P T pCq, we define a simplicial complex Σpτq :“ ∆pp0̂C , τqq, which is
the set of flags in the open interval p0̂C , τq in FpCq ordered by refinement. We write
Σkpτq for the flags of Σpτq with length k. If M is realizable over R, then Σpτq is the
barycentric subdivision of the boundary of the chamber determined by τ .

Proposition 4.3. Let M “ pE, Cq be an oriented matroid of rank r. Then

NM p1, T q “
ÿ

τPT pCq

hpΣpτq; T q.

Proof. The flags in p∆pFpCqq are partitioned into subsets p∆pp0̂C , τ sq for τ P T pCq, and
the latter are in bijection with the flags in Σpτq. Thus, for each k P rr ´ 1s0,

ˇ

ˇ

ˇ

p∆k`1pFpCqq

ˇ

ˇ

ˇ
“

ÿ

τPT pCq

|Σkpτq| .

Applying Lemma 4.2, we have
ÿ

τPT pCq

hpΣpτq; T q “

r´1
ÿ

k“0

ÿ

τPT pCq

|Σkpτq| T kp1 ´ T qr´k´1

“

r´1
ÿ

k“0

ÿ

F P∆kpLpMqq

πF p1qT kp1 ´ T qr´k´1 “ NM p1, T q. □

In order to prove the lower bound in Theorem 1.2, we work with the cd-index of
an (Eulerian) poset. Details can be found in [24, Ch. 3.17].

Let P be a graded poset of rank n with rank function r : P Ñ rns0. For S Ď rns0,
let PS “ tx P P | rpxq P Su. Set αP pSq to be the number of maximal flags in PS , and
let

βP pSq “
ÿ

UĎS

p´1q|SzU |αP pUq.

Let a and b be two noncommuting variables. For a subset S Ď rns0 we define a
monomial uS by setting uS “ e0e1 . . . en, where

ei “

#

a, if i R S,

b, if i P S.

Using these monomials we can define the ab-index ΨP pa, bq of the graded poset P
which is the noncommutative polynomial

ΨP pa, bq “
ÿ

SĎrns0

βP pSquS .

If P is an Eulerian poset, that is every interval in P has an equal number of elements of
even and odd rank, there exists a polynomial ΦP pc, dq in the noncommuting variables
c, d such that

ΨP pa, bq “ ΦP pa ` b, ab ` baq.

The polynomial ΦP pc, dq is called the cd-index of the Eulerian poset P . For an
overview about the cd-index see [3].

If M “ pE, Cq is an oriented matroid of rank r, then for τ P T pCq and k P rr ´ 1s,

hkpΣpτqq “
ÿ

SĎrr´1s

|S|“k

βr0̂C,τspSq.(4)

Therefore, since r0̂C , τ s is Eulerian [4, Cor. 4.3.8], we have
(5) hpΣpτq; T q “ Ψr0̂C,τsp1, T q “ Φr0̂C,τsp1 ` T, 2T q,
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so the h-polynomial can be viewed as a coarsening of the cd-index.

Proposition 4.4. Let M “ pE, Cq be an oriented matroid of rank r. Then for all
τ P T pCq,

EA
r pT q ď hpΣpτq; T q,

and equality holds if and only if τ is a simplicial tope.

Proof. A lattice P of rank r is Gorenstein* if it is Cohen–Macaulay and Eulerian.
Ehrenborg and Karu [11, Cor. 1.3] proved that such a lattice P satisfies

(6) ΦBr pc, dq ď ΦP pc, dq,

where Br is the Boolean lattice of rank r. If τ P T pCq, then the interval r0̂C , τ s is both
Cohen–Macaulay and Eulerian as shown in [4, Cor. 4.3.7 & 4.3.8]. Thus, using (5) we
obtain, by substituting c “ 1 ` T and d “ 2T in (6), ΦBr p1 ` T, 2T q ď hpΣpτq; T q.
The claimed inequality thus follows from ΦBr

p1 ` T, 2T q “ EA
r pT q as this is the

h-polynomial of the barycentric subdivision of the r-dimensional simplex.
If τ is a simplicial tope, then r0̂C , τ s is a Boolean lattice by definition and, thus,

EA
r pT q “ hpΣpτq; T q. On the other hand, suppose we have EA

r pT q “ hpΣpτq; T q for
the tope τ P T pCq. This implies

h1pΣpτqq “ 2r ´ r ´ 1.

By definition we have

h1pΣpτqq “

r´1
ÿ

i“1

´

αr0̂C,τsptiuq ´ 1
¯

“

r´1
ÿ

i“1
αr0̂C,τsptiuq ´ r ` 1.

By [4, Exercise 4.4 (b)] we have αr0̂C,τsptiuq ě
`

r
i

˘

. Altogether this yields
r´1
ÿ

i“1

ˆ

r

i

˙

“ 2r ´ 2 “

r´1
ÿ

i“1
αr0̂C,τsptiuq ě

r´1
ÿ

i“1

ˆ

r

i

˙

.

Thus we obtain αr0̂C,τsptr ´ 1uq “ r which by [4, Exercise 4.4 (c)] implies that the
tope τ is simplicial. □

Proof of Theorem 1.2. The proof of the first statement follows from Theorem 4.1 and
Propositions 4.3 and 4.4. Since βr0̂C,τspSq “ βr0̂C,τsprr´1szSq by [24, Corollary 3.16.6],
it follows from Equation (4) that hkpΣpτqq “ hr´k´1pΣpτqq. Hence, the second state-
ment follows by Proposition 4.3. □

4.1. Examples. We compute NM p1, T q for some oriented matroids M .

4.1.1. A uniform matroid with rank 3. Consider the matroid M “ U3,4. One set of
covectors is defined by the real arrangement given by xyzpx ` y ` zq0. There are
14 “ 24 ´ 2 topes since p` ` `´q and p´ ´ ´`q are not topes. For instance, the
inequality system given by x ą 0, y ą 0, z ą 0 and x ` y ` z ă 0 is infeasible. The
topes with an even number of ` symbols correspond to triangles, and the topes with
an odd number of ` symbols correspond to squares. Therefore, there are 8 triangles
and 6 squares, so by Proposition 4.3,

NM p1, T q “ 8p1 ` 4T ` T 2q ` 6p1 ` 6T ` T 2q “ 14 ` 68T ` 14T 2.

By Proposition 3.2, the coarse numerator for M is given by

NM pY, T q “ 1 ` 4Y ` 6Y 2 ` 3Y 3 ` p8 ` 26Y ` 26Y 2 ` 8Y 3qT

` p3 ` 6Y ` 4Y 2 ` Y 3qT 2.
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4.1.2. A uniform matroid with rank 4. Three uniform matroids, which are not iso-
morphic to the matroids underlying Coxeter arrangements, in [19] had the seemingly
rare property that NM p1, T q{πM p1q P ZrT s. These are the uniform matroids Ur,n for

pr, nq P tp4, 5q, p4, 7q, p4, 8qu,

and we consider pr, nq “ p4, 7q. From Proposition 4.3, this integrality condition is
equivalent to the integrality of the average of the h-vectors. To do this computation,
we used the hyperplane arrangement package [18] of polymake version 4.4 [16].

The matroid U4,7 can be realized as a hyperplane arrangement in R4, whose hy-
perplanes are given by

x1x2x3x4px1 ` x2 ` x3 ` x4qpx1 ` 2x2 ` 3x3 ` 4x4qpx1 ` 3x2 ` 2x2 ` 5x4q “ 0.

There are five different polytopes corresponding to chambers of this arrangement,
and they can be seen in Figure 2. The chambers are 4-dimensional cones over these
polytopes.

(A) (B) (C) (D) (E)

Figure 2. The five different polytopes arising as chambers in the
U4,7 arrangement.

There are a total of 84 chambers; 22 are simplices, 22 are triangular prisms, 30
are the polytopes seen in Figure 2(C), six are the polytopes seen in Figure 2(D), and
four are truncated simplices as seen in Figure 2(E). The h-vectors of the barycentric
subdivisions are palindromic, and the first values different from 1 are 11, 17, 23, 29,
and 29 respectively. Thus,

NU4,7 p1, T q “ 22p1 ` 11T ` 11T 2 ` T 3q ` 22p1 ` 17T ` 17T 2 ` T 3q

` 30p1 ` 23T ` 23T 2 ` T 3q ` p4 ` 6qp1 ` 29T ` 29T 2 ` T 3q.

This has the nice coincidence that

NU4,7 p1, T q “ 84p1 ` 19T ` 19T 2 ` T 3q.

Curiously, p1, 19, 19, 1q is the h-vector of the barycentric subdivision of the pyramid
over a pentagon.

4.2. Rank 4 oriented matroids. In this section, we prove that NM p1, T q, for
an oriented matroid M “ pE, Cq of rank 4, is bounded above coefficient-wise by
πM p1qEB

r pT q. The next lemma determines the coefficients of NM p1, T q in terms of
the face lattice of M . To simplify notation, we define

fkpCq :“
ˇ

ˇ

ˇ

p∆k`1
`

FpCq
˘

ˇ

ˇ

ˇ
“
ˇ

ˇ

␣

F P ∆k`1
`

FpCq
˘

: F ends at a tope
(
ˇ

ˇ .

For fpT q “
ř

kě0 akT k, let fpT qrT ks “ ak.

Lemma 4.5. Let M “ pE, Cq be an oriented matroid of rank r. For ℓ P rr ´ 1s0,

NM p1, T qrT ℓs “

ℓ
ÿ

k“0
p´1qℓ´kfkpCq

ˆ

r ´ k ´ 1
ℓ ´ k

˙

.
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Proof. Let τ P T pCq and let fpΣpτq; T q be the f -polynomial. The coefficient of T ℓ in
the h-polynomial of Σpτq is

hℓpΣpτqq “

ℓ
ÿ

k“0
p´1qℓ´kfkpΣpτqq

ˆ

r ´ k ´ 1
ℓ ´ k

˙

.

By Proposition 4.3,

NM p1, T qrT ℓs “
ÿ

τPT pCq

ℓ
ÿ

k“0
p´1qℓ´kfkpΣpτqq

ˆ

r ´ k ´ 1
ℓ ´ k

˙

“

ℓ
ÿ

k“0
p´1qℓ´kfkpCq

ˆ

r ´ k ´ 1
ℓ ´ k

˙

. □

Proposition 4.6. If M is an orientable matroid of rank r ě 3, then

NM p1, T qrT s ă πM p1qEB
r pT qrT s.

If M is of rank 4, then NM p1, T q ă πM p1qEB
4 pT q.

Proof. From Theorem 1.2, NM p1, T q has degree r ´ 1 and is palindromic. Therefore
it suffices to just prove the inequality between the linear coefficients.

Suppose C is a set of covectors such that M “ pE, Cq is an oriented matroid.
The number f1pCq counts the flags of length two in FpCq which end at a tope, and
f0pCq “ |T pCq|. Using [4, Proposition 4.6.9], we have the following inequality:

f1pCq ă

r´2
ÿ

j“0
2r´1´j

ˆ

r ´ 1
j

˙

|T pCq|.(7)

Using [22, Sec. 13.1], one can express the terms of EB
r pT q in terms of alternating sums.

The linear term is, thus, 3r´1 ´ r.

NM p1, T qrT s “ f1pCq ´ pr ´ 1qf0pCq pLemma 4.5q

ă

˜

r´2
ÿ

j“0
2r´1´j

ˆ

r ´ 1
j

˙

|T pCq|

¸

´ pr ´ 1q|T pCq| pEq. 7q

“ p3r´1 ´ 1q|T pCq| ´ pr ´ 1q|T pCq|

“ πM p1qEB
r rT s.

The penultimate equality is seen by counting, in two different ways, the number of
ways to color r ´ 1 balls with three colors. □

5. Extremal families
In this section, we prove Theorem 1.5 in two parts by constructing infinite families of
matroids whose normalized coarse flag polynomial is arbitrarily close to the bounds
given in Conjecture 1.4. The upper bound is witnessed by the family of uniform ma-
troids, and the lower bound is witnessed by the family of finite projective geometries.
See Section 2.1 for definitions.

In what follows, we compute limits of univariate polynomials of a fixed degree.
Identifying degree d polynomials a0 ` a1T ` ¨ ¨ ¨ ` adT d with the points pa0, . . . , adq P

Rd`1, the limit is determined using the Euclidean norm in Rd`1.
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5.1. The upper bound. The next lemma relates the type B Eulerian polynomial
EB

r with the type A Eulerian polynomial EA
r , which may be of independent interest.

Lemma 5.1. For r P N,

EB
r pT q “ p1 ´ T qr´1 `

r´1
ÿ

k“1
2k

ˆ

r ´ 1
k

˙

T p1 ´ T qr´k´1EA
k pT q.(8)

Proof. Let PrpT q denote the polynomial on the right side in (8). It is clear that
P1pT q “ EB

1 pT q “ 1, so we assume r ě 2. Recall two recurrence relations concerning
the two Eulerian polynomials [22, Thms. 1.4 & 13.2]; namely,

EA
r`1 “ p1 ` rT qEA

r ` T p1 ´ T q
dEA

r

dT
,

EB
r`1 “ p1 ` p2r ´ 1qT qEB

r ` 2T p1 ´ T q
dEB

r

dT
.

We will prove that PrpT q satisfies the type B recurrence relation, and thus the lemma
will follow.

Applying the type A recurrence relation on Eulerian polynomials, we have

2T p1 ´ T q
dPr

dT
“ 2T p1 ´ rqp1 ´ T qr´1

`

r´1
ÿ

k“1
2k`1

ˆ

r ´ 1
k

˙

T p1 ´ T qr´k´1 `EA
k`1 ´ rTEA

k

˘

.

Lastly, we have

p1 ` p2r ´ 1qT qPrpT q ` 2T p1 ´ T q
dPr

dT
pT q

“ p1 ´ T qr ` 2T p1 ´ T qr´1 `

r´1
ÿ

k“1
2k`1

ˆ

r ´ 1
k

˙

T p1 ´ T qr´k´1EA
k`1

`

r´1
ÿ

k“1
2k

ˆ

r ´ 1
k

˙

T p1 ´ T qr´kEA
k

“ p1 ´ T qr ` 2T p1 ´ T qr´1 ` 2rTEA
r ` 2pr ´ 1qT p1 ´ T qr´1

`

r´1
ÿ

k“2
2k

ˆ

r ´ 1
k ´ 1

˙

T p1 ´ T qr´kEA
k `

r´1
ÿ

k“2
2k

ˆ

r ´ 1
k

˙

T p1 ´ T qr´kEA
k

“ p1 ´ T qr `

r
ÿ

k“1
2k

ˆ

r

k

˙

T p1 ´ T qr´kEA
k “ Pr`1pT q. □

Proposition 5.2. For r P N,

lim
mÑ8

NUr,m
p1, T q

πUr,m p1q
“ EB

r pT q.

Proof. From [19, Proposition 6.9],

NUr,m
p1, T q

πUr,m
p1q

“ p1 ´ T qr´1 `

řr´1
ℓ“1

řr´ℓ´1
k“0

`

m
ℓ

˘`

m´ℓ´1
k

˘

2ℓT p1 ´ T qr´ℓ´1EA
ℓ

řr´1
k“0

`

m´1
k

˘

“ p1 ´ T qr´1 `

r´1
ÿ

ℓ“1
2ℓT p1 ´ T qr´ℓ´1EA

ℓ

˜

`

m
ℓ

˘
řr´ℓ´1

k“0
`

m´ℓ´1
k

˘

řr´1
k“0

`

m´1
k

˘

¸

.
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For ℓ P rr ´ 1s, it follows that

lim
mÑ8

`

m
ℓ

˘
řr´ℓ´1

k“0
`

m´ℓ´1
k

˘

řr´1
k“0

`

m´1
k

˘ “

ˆ

r ´ 1
ℓ

˙

.

Therefore,

lim
mÑ8

NUr,m
p1, T q

πUr,m p1q
“ p1 ´ T qr´1 `

r´1
ÿ

ℓ“1
2ℓ

ˆ

r ´ 1
ℓ

˙

T p1 ´ T qr´ℓ´1EA
ℓ .(9)

By Lemma 5.1, the right side of (9) is EB
r pT q. □

5.2. The lower bound. For an indeterminate X, a nonnegative integer r, and 0 ď

k ď r, we set
ˆ

r

k

˙

X

“
p1 ´ Xrqp1 ´ Xr´1q ¨ ¨ ¨ p1 ´ Xr´k`1q

p1 ´ Xqp1 ´ X2q ¨ ¨ ¨ p1 ´ Xkq
P ZrXs.

For I Ď rr ´ 1s, where I “ ti1 ă ¨ ¨ ¨ ă iku, we set i0 “ 0, ik`1 “ r, and
ˆ

r

I

˙

X

“

|I|
ź

m“1

ˆ

im`1

im

˙

X

“

ˆ

r

ik

˙

X

ˆ

ik

ik´1

˙

X

¨ ¨ ¨

ˆ

i2

i1

˙

X

.

The number of k-dimensional subspaces of Fr
q is equal to

`

r
k

˘

q
. For I Ď rr ´ 1s, the

number of flags 0 “ V0 Ă V1 Ă ¨ ¨ ¨ Ă Vk Ă Vk`1 “ Fr
q with I “ tdimpVjq | j P rksu

is equal to
`

r
I

˘

q
. Throughout this subsection, we will assume that when I Ď rr ´ 1s,

then I “ ti1, . . . , iku, where ij ă ij`1 for j P rk ´ 1s. We define the polynomial

γIpX, Y q “

|I|
ź

ℓ“0

iℓ`1´iℓ´1
ź

m“0
p1 ` XmY q.

Let M “ PGpr ´ 1, qq be the matroid determined by the projective geometry of
dimension r and order q. Thus, the lattice of flats of M is isomorphic to the subspace
lattice of the finite vector space Fr

q. The Poincaré polynomial of M is πM pY q “

γ∅pq, Y q since the Möbius function values of a flat of rank k in LpMq is p´1qkqpk
2q.

Lemma 5.3. For r P N and a prime power q,

NP Gpr´1,qqpY, T q “
ÿ

IĎrr´1s

ˆ

n

I

˙

q

γIpq, Y qT |I|p1 ´ T qr´1´|I|.

Proof. Let M “ PGpr ´ 1, qq. It follows that ∆pLpMqq is in bijection with the set of
flags in Fr

q with proper nontrivial subspaces. Let I Ď rr´1s, and suppose F and F 1 are
flags in Fr

q of length |I| containing proper nontrivial subspaces, whose dimensions are
given by I. It follows that πF pY q “ πF 1 pY q since the intervals in ∆pLpMqq determined
by F and F 1 are isomorphic. In particular, πF pY q is determined by I, the set of
(proper nontrivial) subspace dimensions. Furthermore, each interval is isomorphic to
the lattice of flats of some projective geometry of order q with smaller dimension.
Therefore, πF pY q “ γIpq, Y q.

Since the number of flags F with a given set of subspace dimensions I Ď rr ´ 1s is
`

r
I

˘

q
, it follows that

NM pY, T q “
ÿ

F P∆pLpMqq

πF pY qT |F |p1 ´ T qr´1´|F |

“
ÿ

IĎrr´1s

ˆ

r

I

˙

q

γIpq, Y qT |I|p1 ´ T qr´1´|I|. □
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Proposition 5.4. Let r P N and

lim
qÑ8

NP Gpr´1,qqp1, T q

πP Gpr´1,qqp1q
“ p1 ` T qr´1,

where q is assumed to be a prime power.

Proof. Let X be an indeterminate, and note that for I Ď rr ´ 1s,

lim
XÑ8

`

n
I

˘

X
γIpX, 1q

γ∅pX, 1q
“ 2|I|.

Set M “ PGpr ´ 1, qq, and since πM pY q “ φ∅pq, Y q, by Lemma 5.3,

lim
qÑ8

NM p1, T q

πM p1q
“

ÿ

IĎrr´1s

2|I|T |I|p1 ´ T qr´1´|I|

“

r´1
ÿ

k“0

ˆ

r ´ 1
k

˙

p1 ´ T qr´1´kp2T qk

“ p1 ` T qr´1. □

5.3. Proof of Theorem 1.5. The first part follows from Propositions 5.2 and 5.4,
and the second part follows from Propositions 3.2 and 4.6. □
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