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Random walks generated by the Ewens
distribution on the symmetric group

Alperen Özdemir

Abstract This paper studies Markov chains on the symmetric group Sn where the transition
probabilities are given by the Ewens distribution with parameter θ > 1. The eigenvalues are
identified to be proportional to the content polynomials of partitions. We show that the mixing
time is bounded above by a constant depending only on the parameter if θ is fixed. However,
if it agrees with the number of permuted elements (θ = n), the sequence of chains has a total
variation cutoff at log n

log 2 .

1. Introduction
The Ewens distribution on the symmetric group is defined by probabilities that are
exponentially proportional to the number of cycles of permutations, with a base pa-
rameter θ > 0. It originated in population genetics [12], then has gained a broader
reach. It is initially defined on partitions of integers, which is related to the symmetric
group by cycle decompositions. It arises from well-known cycle generating processes,
Feller Coupling and the Chinese restaurant process. (See [3].) Crane [6] has an exten-
sive survey on Ewens sampling formula.

The Ewens distribution can also be considered a deformation of the uniform dis-
tribution on the symmetric group. Hanlon [14] studied a Metropolis Markov chain
driven by random transpositions with stationary distribution as the Ewens measure.
The spectral analysis of this chain is further carried out in [10], and the mixing time is
studied. More recently, Jiang [15] showed a cutoff result for the random transposition
Metropolis chain.

The chains we study in this paper have transition probabilities given by Ewens
distributions. At each stage, a permutation is randomly chosen and multiplied by
the permutation of the current state. We are interested in finding the mixing time
of the chains depending on the base parameter θ of the distribution. A more precise
description is as follows:

Let σ and τ be two permutations in Sn. Define γ(σ) to be the number of cycles
in σ. For a given θ > 1, possibly a function of n, we raise it to the number of cycles
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of permutations to obtain the probabilities. So, if the chain is at permutation σ at a
certain stage, the probability of moving to τ at the next stage is

(1) Pθ(τσ−1) = θγ(τσ−1)

θ(n) ,

where 1
θ(n) is the normalizing constant. Explicitly,

θ(n) =
n∑

i=0

[
n

i

]
θi = θ(θ + 1) · · · (θ + n − 1),

where
[

n
i

]
is a Stirling number of the first kind, which counts the number of permu-

tations of cycle length i in Sn (see [2, Section 1.4]).
Let us briefly mention some properties of our Markov chain. The chain is irreducible

and aperiodic, since the transition probability is non-zero for any permutation. It is
time-homogenous, simply because we have the same transition probabilities regardless
of the stage. It is also reversible, following from the fact that any permutation and its
inverse, which have the same cycle type, have the same probability of being selected
at any stage. From the very same fact, the transition matrix is also symmetric, which
implies it is doubly stochastic. Therefore, the stationary distribution is the uniform
distribution over Sn.

Next we define the distance concept used throughout the paper. Let the probability
assigned to σ ∈ Sn be P t

θ(σ) after running the chain for t steps. The total variation
distance between P t

θ and the uniform distribution π is

(2) dθ(t) := ∥P t
θ − π∥T V = 1

2
∑

σ∈Sn

|P t
θ(σ) − π(σ)| = max

S⊆Sn

|P t
θ(S) − π(S)|.

Our goal is to investigate the convergence time with respect to the total variation
distance. It is a common phenomenon in this setting that the convergence to the
stationary distribution shows a cutoff, a sharp transition. The following definition of
cutoff is found in [20]. A sequence of Markov chains exhibits a cutoff at the mixing
time {tn} with a window of size {wn} if

(i) limn→∞
wn

tn
= 0,

(ii) limγ→−∞ lim infn→∞ dT V (tn + γwn) = 1,
(iii) limγ→∞ lim supn→∞ dT V (tn + γwn) = 0.

Also, see [8] for an insightful treatment of the concept and [24] for another definition
along with a long list of examples. Our result reads:

Theorem 1.1. Let Pθ be the Markov chain on Sn defined above in (1), and c > 1 be
a constant.

(i) If t ⩾ c θ2+1
2 , then dθ(t) < C(θ)e−c for some constant C(θ) depending only

on θ.
(ii) If θ = n, then the chains have a total variation cutoff at tn = log n

log 2 with
wn = 1.

For the rest of the paper, we first present the representation theory tools in Sec-
tion 2. Then we identify the eigenvalues of the Markov chain using Young–Jucys–
Murphy elements. They turn out to be functions of contents of Young diagrams. In
the following section, we prove the first part of Theorem 1.1 by using Plancherel
growth process. We also provide a simpler proof for only the integer values of θ. In
Section 4, we prove the second part of the theorem.
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2. Representation theory techniques
We summarize the techniques that are used in the following sections. We start with
the method developed in [11] to study the random transposition walk. For the con-
nection to the group representation theory, first consider the Fourier transform of the
measure µ defined on a finite group G, evaluated at any representation λ of G,

µ̂(λ) =
∑
g∈G

µ(g)λ(g).

Then its inverse transform is
µ(g) =

∑
λ irred.

dλtr(λ(g−1)µ̂(λ)),

where the sum is over all irreducible representations of G and dλ stands for the
dimension of the representation λ. The inverse transform leads to Plancherel’s formula
stated below:

(3)
∑
g∈G

|µ(g)|2 = 1
|G|

∑
λ irred.

dλtr(µ̂(λ)µ̂(λ)T ).

It establishes the connection with the total variation distance if we take µ on the
left-hand side to be the difference of two measures.

We also note a fact about the Fourier transform of convolutions of measures, as a
Markov chain at step t can be viewed as t-fold convolution measure of the transition
probabilities. The convolution of two measures µ and ν is defined to be

µ ∗ ν(g) =
∑
h∈G

µ(gh−1)ν(h).

The Fourier transform of a convolution satisfies
(4) µ̂ ∗ ν(g) = µ̂(g)ν̂(g).

2.1. Young–Jucys–Murphy elements and eigenvalues. We will focus on the
symmetric group Sn. The irreducible representations of Sn are indexed by partitions
of integers. We use the notation λ = (λ1, λ2, . . .) ⊢ n for partitions of n. λ′ refers to
the conjugate partition of λ. The dimension of an irreducible representation λ, dλ, is
equal to the number of standard Young tableaux of shape λ. See, for instance, [23,
Chapter 2].

First we state an upper bound theorem, which was proved in [7, Chapter 3B] using
Plancherel formula (3). As we identify the eigenvalues, we construct the upper bound
at the same time. We first note that the irreducible representations of the symmetric
group Sn are indexed by partitions of n; see [23, Chapter 2].

Lemma 2.1 ([7]). Let µ be a probability distribution over Sn and π be the uniform
distribution. Then,

∥µ − π∥2
T V ⩽

1
4
∑
λ⊢n

λ ̸=(n)

dλ tr(µ̂(λ)µ̂(λ)T ).

In our case, we replace µ by P t
θ . The first of the two observations to be made on P t

θ ,
in order to simplify the right-hand side, is P t

θ is t-fold convolution of Pθ. Therefore,
by (4), P̂ t

θ(λ) = P̂θ(λ)t.
For the second one, first consider P̂θ as an element of the group algebra, C(Sn).

A well-known fact about the center of the group algebra, Z(C(Sn)), is that it has
basis consisting of the sum of the all elements in the same conjugacy class. Since the
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density function defined by Pθ has an equal weight for the permutations in the same
conjugacy class, P̂θ(λ) is in Z(C(Sn)). But then P̂θ is a constant times the identity
matrix of the same dimension with λ, since the representation of any element in the
center is in that form as a result of Schur’s lemma. We have more to infer from this
fact, but for now we use below the implication P̂θ(λ) = P̂θ(λ)T .

Putting two observations together, the upper bound can be expressed as

(5) ∥P t
θ − U∥T V ⩽

1
4
∑
λ⊢n

λ̸=(n)

dλtr(P̂θ(λ)2t).

Next, we evaluate P̂θ(λ). We already stated that P̂θ(λ) is a constant multiple of
the identity matrix. In order to identify the constant we first introduce Young–Jucys–
Murphy elements. The detailed treatment of the subject can be found in [5, 26]. For
i = 2, ..., n, consider the following elements Ri ∈ C(Sn):
(6) Ri = (1, i) + (2, i) + · · · + (i − 1, i),
which were independently introduced in [16] and [22]. These elements form a basis
for the Gelfand–Tsetlin subalgebra of C(Sn), which is generated by the centers of
the symmetric groups S1, .., Sn. It is a maximal commutative subalgebra, and is the
algebra of all operators diagonal in the Gelfand–Tsetlin basis. The diagonal entries of
the irreducible representations of Ri are the contents of boxes that contain i in the
standard Young tableaux. The content of a box in the Young diagram of is defined by
its position in the diagram, it is the column number of the box minus the row number
of it.

To be more specific, let us take a partition λ of n. There are dλ standard Young
tableaux of λ, each of which is associated with a fixed diagonal entry of λ(Ri) for all
i = 2, ..., n. In fact, the order of the diagonal entries does not matter for our purpose
(see Corollary 2.4), so we only consider the first entry. We let the upper-left diagonal
of λ(Ri) be determined by the position of i in the standard Young tableau which has
entries according to the lexicographic order, i.e., 1 through λ1 in the first part, λ1 + 1
through λ1 +λ2 +1 in the second part and so on. Denote the upper-left corner element
of λ(Ri) by cλ(i). So the dλ × dλ diagonal matrix λ(Ri) is in the form

λ(Ri) =


cλ(i)

∗
. . .

∗

.

We give an example below: We give an example below:
Example 2.2. Let λ = (3, 1) ⊢ 4. The Young tableaux for this partition are

T1 = 1 2 3
4 T2 = 1 2 4

3 T3 = 1 3 4
2

The ith diagonal entry of λ(Rj) is the content of the box containing j in Ti. So we
have

λ(R2) =

1 0 0
0 1 0
0 0 −1

 , λ(R3) =

2 0 0
0 −1 0
0 0 1

 and λ(R4) =

−1 0 0
0 2 0
0 0 2

.

Although no Ri for i ∈ {2, ..., n} is in the center of the group algebra, any sym-
metric polynomial with variables R2, ..., Rn is in Z(C(Sn)). See [13, Lecture 2] for the
details. We are particularly interested in the elementary symmetric functions of YJM
elements, the reason is the following theorem:

Algebraic Combinatorics, Vol. 6 #4 (2023) 910
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Theorem 2.3 ([9]). Let Ri be defined as in (6). The kth elementary symmetric func-
tion in R2, ..., Rn is the sum over all permutations in conjugacy classes of Sn with
n − k cycles in the group algebra, i.e.,

ek(R2, ..., Rn) =
∑

2⩽i1<···<ik⩽n

Ri1 · · · Rik
=

∑
σ∈Sn

γ(σ)=n−k

σ.

A useful corollary, which is related to our observations on the representations of Ri,
is as follows:

Corollary 2.4. Let λ be an irreducible representation of Sn. Then

λ (ek(R2, ..., Rn)) = ek(cλ(2), ..., cλ(n)) Idλ
.

Proof. Since ek(R2, ..., Rn) is the sum of elements in the same conjugacy classes, it is
in the center of the group algebra. Therefore, its representation is a constant multiple
of the identity matrix by Schur’s lemma. So it suffices to consider the upper-left corner
entries of each λ(Ri) for i ∈ {2, ..., n}, which are cλ(i)’s. □

Now we are ready to calculate P̂θ(λ). By Theorem 2.3 and its corollary,

P̂θ(λ) =
∑

σ∈Sn

Pθ(σ)λ(σ)

=
n−1∑
k=0

θn−k

θ(n)

∑
σ∈Sn

γ(σ)=n−k

λ(σ)

=
n−1∑
k=0

θn−k

θ(n) λ (ek(R2, ..., Rn))

=
(

n−1∑
k=0

θn−k

θ(n) ek(cλ(2), ..., cλ(n))
)

Idλ

=
(

θn

θ(n)

n−1∑
k=0

ek

(
cλ(2)

θ
, ...,

cλ(n))
θ

) )
Idλ

.

Next, we use the identity
n∏

i=1
(1 + xi) =

n∑
k=1

ek(x1, ..., xn)

to obtain above,

P̂θ(λ) =
(

θn

θ(n)

n∏
i=2

(
1 + cλ(i)

θ

))
Idλ

=
(

θ

θ(n)

n∏
i=2

(θ + cλ(i))
)

Idλ

Since cλ(1) = 0 for all λ ⊢ n, the expression eventually simplifies to

(7) P̂θ(λ) =
(

n∏
i=1

(
θ + cλ(i)
θ + i − 1

))
Idλ

.
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Since Pθ is a symmetric matrix, the eigenvalues of irreducible representations give
complete list of eigenvalues of Pθ. See [11, Section 4] for the details. Hence, the
eigenvalues of Pθ with their multiplicities are

(8) βλ,θ =
n∏

i=1

(
θ + cλ(i)
θ + i − 1

)
with multiplicity d2

λ for λ ⊢ n.

1 1 1 . . . 1 1

θ−1
θ+λ1

θ
θ+λ1+1

. . . θ+λ2−1
θ+λ1+λ2−1

θ−2
θ+λ1+λ2

θ−1
θ+λ1+λ2+1

. . .

...
...

θ−λ′
1+1

θ+n−λk

Figure 1. The factors of βλ, the eigenvalue associated with λ =
(λ1, . . . , λk) ⊢ n.

Therefore the upper bound on the total variation distance (5) is reduced to

dθ(t) ⩽ 1
4
∑
λ⊢n

λ ̸=(n)

dλ tr

((
n∏

i=1

(
θ + cλ(i)
θ + i − 1

)2t
)

Idλ

)

⩽
1
4
∑
λ⊢n

λ ̸=(n)

d2
λ

n∏
i=1

(
θ + cλ(i)
θ + i − 1

)2t

.(9)

3. Proof of Theorem 1.1 part (i)
In this section, we prove the first part of the theorem. It can be explicitly stated as
saying that the convergence (to their stationary distributions) times of the Markov
chains defined on Sn by the Ewens distributions with a fixed parameter θ are bounded
above by a constant, which depends on only θ, for all n.

We first study a sum

(10) Z(θ) :=
∑
λ⊢n

d2
λβ2

λ,θ,

which is none other than the sum of the eigenvalues of P 2
θ . We will relate this ex-

pression to upper bound on the mixing time. Observe that unlike (9) we included the
trivial partition (n). We will calculate it explicitly. First we need some definitions.

Algebraic Combinatorics, Vol. 6 #4 (2023) 912
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3.1. Plancherel growth process. Let Y denote the Young’s lattice, which is the
lattice of all integer partitions. A partial order on Y is defined by the inclusion of
Young diagrams, i.e., for λ, µ ∈ Y we say µ is covered by λ, and denote it by µ ↗ λ,
if λ can be obtained from µ by adding a box to an admissible position in its Young
diagram. This box adding process gives a Markov chain on Y, known as the Plancherel
growth process; see [17]. Its transition probabilities are given by

p(λ, Λ) = dΛ

|Λ|dλ
for λ ↗ Λ.

The law of the chain at stage n is the Plancherel measure on Sn, which is defined as

P(λ) = d2
λ

n! for λ ⊢ n.

We use this process to compute (10) recursively. Let us list some properties that the
transition measure satisfies. Firstly,

(11) dΛ =
∑

λ:λ↗Λ

dλ and dλ = 1
|Λ|

∑
Λ:λ↗Λ

dΛ.

Secondly, we state the relation of this measure to contents, similar to the way it is
presented in [18, Section 10]. Let X be the content of the random box added to the
diagram of λ according to the transition measure. We have

(12)

Eλ(X) =
∑

Λ:λ↗Λ

c(Λ ∖ λ) dΛ

|Λ|dλ
= 0,

Eλ(X2) =
∑

Λ:λ↗Λ

c(Λ ∖ λ)2 dΛ

|Λ|dλ
= |λ|.

Lemma 3.1. If Zn(θ) be defined as in (10), then

Zn(θ) =
(

n + θ2 − 1
n

)/(
n + θ − 1

n

)2
.

Proof. By the first equation in (11), we have

Zn(θ) =
∑
λ⊢n

d2
λβ2

λ,θ =
∑

µ⊢n−1
d2

µβ2
µ,θ

∑
λ:µ↗λ

dλ

dµ

(
βλ,θ

βµ,θ

)2
.

Next, using the formula (8) and the equations in (12),

Zn(θ) =
∑

µ⊢n−1
d2

µβ2
µ,θ

∑
λ:µ↗λ

dλ

dµ

(
θ + c(λ ∖ µ)

n + θ − 1

)2

= n

(n + θ − 1)2

∑
µ⊢n−1

d2
µβ2

µ,θ

(
E(θ2) + E(2θX) + E(X2)

)
= n

n + θ2 − 1
(n + θ − 1)2 Zn−1(θ).

Since Z1(θ) = 1, the recursive relation above gives the result.
□

We also note the following combinatorial identity. Since Z(θ) is in fact the sum
of the eigenvalues of P 2

θ , it will agree with the trace of P 2
θ . Each element along the

diagonal of P 2
θ is obtained by the sum of squares of elements in any row, since Pθ is

symmetric. Putting these observations together, we obtain:
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1
n!
∑

σ∈Sn

θ2γ(σ) =
(

n + θ2 − 1
n

)
.

If we let Y (π) be the number of cycles in a uniformly chosen permutation π ∈ Sn,
and define Γn(π) = θY (π), we have

E(Γn) =
(

n + θ − 1
n

)
and E(Γ2

n) =
(

n + θ2 − 1
n

)
.

The first identity above is obtained by computing the trace of Pθ.

3.2. Upper bound. Before evaluating the upper bound on the total variation dis-
tance, we give an upper bound on the eigenvalues. In particular we show that the
eigenvalue associated with λ = (n − 1, 1) is the largest among all but the trivial
partition (n).

Lemma 3.2. Let λ ̸= (n) be a partition of n. Then β2
(n−1,1),θ ⩾ β2

λ,θ for all θ > 1.

Proof. We will compare the factors of the eigenvalues βλ,θ and β(n−1,1),θ going through
all boxes in their diagrams according to lexicographic order. We ignore the product of
denominators in (8), θ(n), as its common to all partitions. Every partition has a box
in the upper left corner of its diagram, so the first factors agree. Since λ is not the
trivial partition, its diagram also includes a box in the leftmost position of its second
row, which we cross out with the box of (n − 1, 1) in the same position. Finally, we
distinguish two cases, the positive (1) and the negative (2) factors of βλ,θ. Since θ > 1,
β(n−1,1),θ does not have a negative factor.

Skipping the aforementioned two boxes, we start with the box in the first row and
the second column of (n−1, 1). It has the factor θ+2−1 = θ+1. While the partition λ
can have a box at the same position or a box at the second row and the second column
or at the third row and the first column. In the last two cases, the factor is θ − 1,
which is positive and smaller than of (n − 1, 1). We repeat this argument for all boxes
with positive factors.

Suppose the kth box of λ has a negative factor, i.e., θ+cλ(k+2) < 0. Since cλ(k+2)
is minimized if the first k boxes of λ are located in th first column, we have cλ(k+2) >
−(k + 1). On the other hand, the kth factor for the partition (n − 1, 1) is θ + k.
Since θ > 1, we have |θ + k| ⩾ |θ + cλ(k + 2)|, which proves the second case and the
lemma. □

We are ready to take on (5),

(13)

dθ(t) ⩽
∑
λ⊢n

λ̸=(n)

d2
λβ

2(t+1)
λ

⩽

max
λ⊢n

λ ̸=(n)

β2
λ

t

(Z(θ) − 1)

⩽

(
θ − 1

θ + n − 1

)2t(
n + θ2 − 1

n

)(
n + θ − 1

n

)−2
.

Next, we bound the binomial terms in the sum. Let us take k ⩽ θ < k + 1 for k ∈ Z+.
For the first term, we have (

n + θ2 − 1
n

)
<

n(k+1)2

k2! .

Algebraic Combinatorics, Vol. 6 #4 (2023) 914
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We need a lower bound for the latter,(
n + θ − 1

n

)
>

nk

(k + 1)! .

So, if we take t = c k2+1
2 for some c > 1,

dθ(t) ⩽ 1
4

n(k+1)2

k2!
(k + 1)!2

n2k

(
k − 1

k + n − 1

)c(k2+1)

= C(k)n1−c

where C(k) is a some constant depending only on k = ⌊θ⌋. Since c is also independent
of n, we can take any fixed value for n, say n ⩾ 3, and conclude that dθ(t) < C(k)e−c.
This concludes the proof of Theorem 1.1 part (i).

3.3. An elementary proof for integer parameters. Let k ∈ Z+. By the hook-
length formula, we may write Z(k) explicitly as

(14) Z(k) =
∑
λ⊢n

(n!)2

(
∏n

i=1 h(i))2

n−1∏
i=0

(
k + cλ(i + 1)

k + i

)2t

,

Then we can rearrange it as the following:

(15)
Z(k) =

∑
λ⊢n

(
n!∏n

i=1 k + i − 1

)2
(

n∏
i=1

k + cλ(i)
h(i)

)2

=
(

n + k − 1
n

)−2∑
λ⊢n

s2
λ(1k)

where sλ(1k) =
∏n

i=0
k+c(i)

h(i) is the Schur function with k non-zero variables, each
being equal to 1. Note that sλ(1k) is zero unless λ′

1 ⩽ k. See [21, Section I-3] for
details.

Consider the Cauchy identity,∏
i,j

(1 − xiyj)−1 =
∑

λ part.
sλ(x)sλ(y)

where x = (x1, x2, ...), y = (y1, y2, ...) and the sum is over all partitions λ of any size.
The proof is found in [21, Section I-4]. We are interested in partitions λ such that
|λ| = n, so we consider the coefficient of tn for the generating function

F (x, y; t) =
∏
i,j

(1 − xiyjt)−1.

Then we take x1 = · · · = xk = 1 and xl = 0 for l > k. We do the same for y to obtain∑
λ part.

s2
λ(1k) =

k∏
i=1

k∏
j=1

(1 − t)−1 = (1 − t)−k2
.

The right-hand side is the generating function for complete symmetric functions, and
the coefficient of tn is given by hn =

(
n+k2−1

n

)
. Therefore,∑

λ⊢n

s2
λ(1k) =

(
n + k2 − 1

n

)
.

We then can proceed as before and show the same upper bound. The reason that we
cannot simply extend the result from integers to continuum is the failure of eigenvalue

Algebraic Combinatorics, Vol. 6 #4 (2023) 915
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monotonicity in the non-integer case. Observe that the eigenvalues are always non-
negative for integer values of θ, which is not true in general.

4. Proof of Theorem 1.1 part (ii)
4.1. Defining representation. It follows from the definition of the total variation
distance (2) that
(16) dθ(t) ⩾ |P t

θ(A) − π(A)|
for any subset A of Sn. A statistic commonly used to choose an expedient subset
in (16) is the number of fixed points. Define Bk to be the set of permutations with
less than or equal to k fixed points. This particular choice of subsets establishes an
important connection with the symmetric group representations.

The defining representation of Sn is the n-dimensional representation ρ where

ρ(σ)ij =
{

1 σ(j) = i
0 otherwise

for σ ∈ Sn. Denote the character of the representation, in other words, the trace of
the matrices given above, by χρ(σ). Observe that χρ(σ) counts the number of fixed
points of σ ∈ Sn. Therefore σ ∈ Bk if and only if χρ(σ) ⩽ k.

Next, we consider χρ as a random variable under the law of the Markov chain at
step t. The defining representation is reducible and decomposed as
(17) ρ = S(n) ⊕ S(n−1,1)

where Sλ is the Specht module associated with partition λ of n, noting that the
partitions of n are in one to one correspondence with the irreducible representations
of Sn. See [23, Chapter 2] for details. For the second moment of χρ, we consider the
decomposition of ρ ⊗ ρ as

(18) ρ ⊗ ρ = 2S(n) ⊕ 3S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,12).

Then we use the facts below,
χρ1⊕ρ2 = χρ1 + χρ2 ,

χρ1⊗ρ2 = χρ1 · χρ2 ,

and invoke some Fourier analytic results, which can be found in [4, Chapter 16] with
detailed proofs and in [7, Section 2C] in most relevance to our case, to calculate the
first two moments of χρ. We have the following expressions for the first two moments
of a distribution µ over Sn.

(19)
Eµ(χρ) = tr(µ̂(n)) + tr(µ̂(n − 1, 1)),
Eµ(χ2

ρ) = 2 tr(µ̂(n)) + 3 tr(µ̂(n − 1, 1)) + tr(µ̂(n − 2, 2)) + tr(µ̂(n − 2, 1, 1)).
Then using the first two moments, the probabilities can be bounded by Chebyshev’s
inequality,

(20) Pr(χρ ⩽ E(χρ) − a) ⩽ Var(χρ)
Var(χρ) + a2 .

In particular, the distribution of χρ under the uniform distribution over Sn is well-
known from the classical matching problem. It is given by

(21) π(Bk) = Prπ(χρ ⩾ k) = 1
(k − 1)!

n∑
l=k

(−1)l−k

l(l − k)!

for k = 1, 2, . . . , whose limiting distribution is Poisson with parameter one. See [25]
for various derivations of this result.
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4.2. Lower bound. The decompositions (17) and (18) of the defining representation
allow us to evaluate the expression in (19) with respect to the law of P t

θ . We first
identify the traces of the Fourier transform by our previous derivation (7) for P̂ t

θ(λ)
for λ ⊢ n.

tr(P̂ t
θ(n)) = 1,

tr(P̂ t
θ(n − 1, 1)) = (n − 1)

(
θ − 1

θ + n − 1

)t

,

tr(P̂ t
θ(n − 2, 2)) = n(n − 3)

2

(
θ − 1

θ + n − 1

)t(
θ − 2

θ + n − 2

)t

,

tr(P̂ t
θ(n − 2, 2)) = (n − 1)(n − 2)

2

(
θ − 1

θ + n − 1

)t(
θ

θ + n − 2

)t

.

If we take t = log n
log(θ+n)−log(θ) − γ

log(θ+n)−log(θ) where γ > 0, then

lim
n→∞

EP t
θ
(χρ) = 1 + eγ

lim
n→∞

EP t
θ
(χ2

ρ) = 2 + 3(1 + eγ) + e2γ .

Therefore, VarP t
θ
(χρ) is asymptotically 4 + eγ .

We take n large enough and define A to be the set of permutations with less than
or equal to eγ−1 + 1 fixed points, i.e.,

A = {σ ∈ Sn : χρ(σ) ⩽ eγ−1 + 1}.

Then by Chebyshev’s inequality (20),

P t
θ(A) = PrP t

θ
(χρ ⩽ 1 + eγ−1) ⩽ 4 + eγ

4 + eγ + e2γ−2 <
1

eγ−2 .

For the uniform distribution, we have

π(A) = Prπ(χρ ⩽ 1 + eγ−1) ⩾ 1 − 1
eγ !

by (21). Putting them together,

dθ(t) = max
S⊆Sn

|P t
θ(S) − π(S)|

⩾|P t
θ(A) − π(A)|

⩾1 − 1
eγ ! − 1

eγ−2 > 1 − 1
eγ

.

Therefore, we have the lower bound

(22) dn

(
log n

log 2 − γ

)
=
∥∥∥∥P

log n
log 2 −γ

θ − π

∥∥∥∥
T V

⩾ 1 − 1
eγ

.

4.3. Dimension bounds and a partial order on partitions. We present bounds
on the sum of d2

λ’s for certain sets of partitions to be used in the proof of the theorem.
A bound for a fixed length of the first row is given by

Lemma 4.1 ([7]). Let |λ| = n and λ1 be the length of the first row of λ. Then,

(23)
∑

λ=(λ1,... )

d2
λ ⩽

(
n

λ1

)2
(n − λ1)!.
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The proof in [7] is by bounding the number of standard Young tableaux. First
choose λ1 elements for the first row, then count all possible standard Young tableaux
that can be formed from the remaining cells.

Next, by Lemma 4.1, we bound the sum of dimension squares for the partitions
with their first row larger than a linear order of n. We use the notation f(n) = O(g(n))
to mean lim supn→∞

∣∣∣ f(n)
g(n)

∣∣∣ < ∞, and f(n) = o(g(n)) for lim supn→∞

∣∣∣ f(n)
g(n)

∣∣∣ = 0.

Lemma 4.2. Let |λ| = n and α ∈ (0, 1). Define Q1 = {λ ⊢ n : αn ⩽ λ1} and
Q2 =

{
λ ⊢ n : αn ⩽ λ1 and λ1

2 ⩽ λ2 ⩽ λ1
}

. As n → ∞, for all ϵ > 0,
(i)
∑

λ∈Q1
d2

λ = O(n(1−α+ϵ)n),
(ii)

∑
λ∈Q2

d2
λ = O(n(1− 3

2 α+ϵ)n).

Proof. The binomial term in (23) is simply bounded by 4n considering(
n

λ1

)
<

n∑
i=0

(
n

k

)
= 2n.

The second term in (23) is bounded by the inequality, (n − λ1)! ⩽ nn−λ1 . Combining
the two observations, we have∑

αn⩽λ1

d2
λ ⩽

∑
i

(
n

αn + i

)2
(n − αn − i)!

⩽ 4n
∑

i

(n − αn − i)!

⩽ n4nn(1−α)n = O(n(1−α+ϵ)n)
for all ϵ > 0, which proves part (i).

To prove part (ii), first note that the proof of Lemma 4.1 can easily be extended
to yield the fact ∑

λ=(λ1,λ2,... )

d2
λ ⩽

(
n

λ1

)2(
n − λ1

λ2

)2
(n − λ1 − λ2)!.

Therefore, similar to part (i),∑
αn⩽λ1

λ1
2 ⩽λ2⩽λ1

d2
λ ⩽

∑
αn⩽λ1

∑
λ1
2 ⩽λ2

(
n

λ1

)2(
n

λ2

)2
(n − λ1 − λ2)!

⩽
∑

i

∑
j

(
n

αn + i

)2(
n

1
2 αn + j

)2
(n − 3

2αn − i − j)!

⩽ n242nn(1− 3
2 α)n = O(n(1− 3

2 α+ϵ)n).
□

Next, we define a partial order on the partitions of a fixed natural number n, known
as the dominance order, which is to be used in the proof.

Definition 4.3 ([21]). Let λ = (λ1, λ2, ...) and µ = (µ1, µ2, ...) be partitions of n. We
say that λ dominates µ, and denote by λ ⪰ µ, if

j∑
i=1

λi ⩾
j∑

i=1
µi for all j ⩾ 1.

If λ ⪰ µ and λ ̸= µ, then we write λ ≻ µ.
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4.4. Upper bound. Let us take βλ = βλ,n. The idea is to show that the large eigen-
values have small multiplicities and vice versa. In summary, we first divide {λ : λ ⊢ n}
into regions with respect to the length of the first two rows, and identify the parti-
tions which dominate every other partition in those regions. Then the bounds on the
dimensions given above are employed.

We start by defining two sets of partitions, of which the eigenvalues are computa-
tionally manageable. The first set consists of partitions where the cells in the Young
diagram are stacked up and right as much as possible for a fixed ratio of the length
of the first row to the total numbers of boxes. Formally, for a fixed α ∈ (0, 1),

(24) λα
(1) := (αn, . . . , αn, rn)

where αq + r = 1 for some q ∈ N and 0 ⩽ r < α. Although the definition makes
sense only if αn and rn are integers, one can choose the closest integers as n tends to
infinity and the proof below works properly.

The set of partitions defined above respects the dominance order (see Definition 4.3)
in the sense that λη

(1) ⪰ λζ
(1) if and only if η ⩾ ζ. In fact, more is true. It is easy to

check that

(25) λα
(1) ⪰ λ if and only if λ1 ⩽ αn.

In the second set of partitions, the length of the second row is fixed to be the half
of the first row’s length if the length of the first row is less than n

2 , otherwise it is half
of the number of remaining cells. More precisely, the definition is as follows:

(26) λα
(2) :=

{(
αn, α

2 n . . . , α
2 n, r̃n

)
α ∈

(
0, 1

2
](

αn, 1−α
2 n, 1−α

2 n
)

α ∈
( 1

2 , 1
)

.

where 0 ⩽ r̃ < α
2 . Similarly,

(27) λα
(2) ⪰ λ if λ1 ⩽ αn, λ2 ⩽ min

{
α

2 n,
1 − α

2 n

}
.

{λα
(1)}α lies through the upper sides of the triangle in Figure 2, while {λα

(2)}α lies
strictly below it through the inscribed triangle in the figure. Then the dominance
order can be interpreted as λα

(i) dominates every partition to the right under the
triangle it lies on.

Next, we estimate the eigenvalues corresponding to those partitions defined above.

Lemma 4.4. Let |λ| = n and αq + r = 1 for some fixed α as in definition (24). Then
we have,

βλα
(1)

⩽ C
(1 + α)q(1+α)n (1 + r)(1+r)n

22n
,

where C is a constant depending on α.
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Proof. We use the formula for the eigenvalues (8) to have

βλα
(1)

=
q∏

i=1

αn∏
j=1

n − i + j

n + (i − 1)αn + j − 1 ×
rn∏

j=1

n − q + j

2n − rn + j − 1

⩽
q∏

i=1

αn∏
j=1

n + j

n + (i − 1)αn + j
×

rn∏
j=1

n + j

2n − rn + j

⩽
q∏

i=1

[(1 + α)n]!
n!

[(1 + (i − 1)α)n]!
[(1 + iα)n]! × [(1 + r)n]!

n!
[(1 + qα)n]!

(2n)!

= ([(1 + α)n]!)q [(1 + r)n]!
(n!)q (2n)!

For n large enough, applying the formula (see [1, 6.1.38])

(28) x! =
√

2πxx+ 1
2 e−x+ ξ

12x , for some 0 < ξ < 1,

to the factorials above, we obtain

βλα
(1)

⩽ e
q

12n

√
(1 + α)q(1 + r)

2
(1 + α)q(1+α)n (1 + r)(1+r)n

22n

⩽ 22/α (1 + α)q(1+α)n (1 + r)(1+r)n

22n
.

□

In fact, for our purpose, only the cases where either r = 0 or r = α
2 are relevant.

For the second set of partitions, we have the following lemma.

Lemma 4.5. Let |λ| = n and r̃ = 0 in the definition (26) for α ∈
(
0, 1

2
]
. Then there

exists q̃ ∈ N such that αq̃ = 2. The eigenvalues are bounded as

βλα
(2)

⩽ C
(

1 + α

2

)αn/2
β

λ
α/2
(1)

,

where C is a constant depending on α.

Proof. The eigenvalue formula (8) gives

βλα
(2)

=
q̃−2∏
i=1

αn/2∏
j=1

n − i + j

n + (i + 1) αn
2 + j − 1

=
αn/2∏
j=1

n + αn
2 + j − 1

n − (q̃ − 1) + j

q̃−1∏
i=1

αn/2∏
j=1

n − i + j

n + i αn
2 + j − 1

⩽

(
n + αn

2 − 1
n − (q̃ − 1)

)αn/2
β

λ
α/2
(1)

=C
(

1 + α

2

)αn/2
β

λ
α/2
(1)

for some constant C. □

Having established bounds on set of eigenvalues, we then bound the total variation
distance for θ = n using the upper bound formula (9). We separate the range of the
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λ10 n/13 n/2 nn/3
R1

R2

R3 R4

λ2

n/4

n/2

Figure 2. Planar representation of partitions with respect to the
length of the first two rows of Young diagram

sum into four regions as depicted in Figure 2. In set notation, they are

R1 =
{

λ ⊢ n : λ1 ⩽
n

13

}
,

R2 =
{

λ ⊢ n : n

13 < λ1 ⩽
n

3 , min
{

λ1

2 ,
1 − λ1

2

}
⩽ λ2

}
,

R3 =
{

λ ⊢ n : n

13 < λ1 ⩽
n

3 , λ2 < min
{

λ1

2 ,
1 − λ1

2

}}
,

R4 =
{

λ ⊢ n : n

3 < λ1 < n
}

.

We take t∗ = log n
log 2 throughout the proof. Also note that

(29) β2t∗

λ = β
2

log 2 log n

λ = n
2

log 2 log βλ .

4.4.1. Region 1. We show that the eigenvalues are small enough after a linear order
of n, so that when multiplied with d2

λ the sum is of smaller order than a constant.
We take r = 0 in the statement of Lemma 4.4, therefore α = 1

q for some q ∈ N. By
Lemma 4.4,

log βλα
(1)

=
(

q

(
1 + 1

q

)
log
(

1 + 1
q

)
− 2 log 2

)
n

=
(

(1 + q)
(

1
q

− 1
2q2 + 1

3q3 − · · ·
)

− 2 log 2
)

n

⩽

(
1 + 1

2q
− 2 log 2

)
n(30)

Then we bound (29).

logn

(
βλα

(1)

)2t∗

= 2
log 2 log βλα

(1)

=
(

2
log 2 + 1

q log 2 − 4
)

n

≈
(

1.44
q

− 1.11
)

n

So if we choose q large enough, or equivalently α small enough,
(

βλα
(1)

)2t∗

⩽ n−n.
It turns out that the smallest integer q that satisfies the inequality is 13. We have,
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∑
λ∈R1

d2
λβ2t∗

λ ⩽

(
β

λ
1/13
(1)

)2t∗ ∑
λ⊢n

λ1⩽n/13

d2
λ

⩽n−1.01n
∑
λ⊢n

d2
λ

⩽n−1.01nn!
=o(n−0.01n).

4.4.2. Region 2. First we briefly justify the need for the restriction on the length
of the second row of Young diagrams. Consider the partition λ = ( n

2 , n
2 ), and the

corresponding eigenvalue

β( n
2 , n

2 ) =
n/2∏
i=1

n + i − 1
n + n

2 − 1 =

( 3
2 n−1

n
2

)(2n−1
n
2

) = C

( 3
2
)3n/2 ( 3

2
)3n/2

22n
= C

33n

25n

for some constant C. Then,

β2t∗

( n
2 , n

2 ) = Cn
2

log 2 n[3 log 3−5 log 2] ≈ Cn−0.49n.

On the other hand,
∑

λ=( n
2 ,... )

d2
λ is of order at least n

2 !. To see this, first fill out the

first row by 1, 2, . . . , n
2 , then there are exactly n

2 ! ways to obtain a standard Young
diagram, which gives a lower bound. But since n(1/2−ϵ)n = o( n

2 !),
∑

λ=( n
2 ,... )

d2
λ β2t∗

( n
2 , n

2 )
is of order larger than a constant.

We restrict our attention to a smaller region, and use part (ii) of Lemma 4.2 to
bound the dimensions. First, we choose a sequence of partitions {λαi

(1)}i in this region,
for which α0 = 2

3 , α1 = 1
2 , α2 = 2

5 and αi = 1
i for i ⩾ 3. By the dominance order

relations (25), we have∑
λ∈R2

d2
λ (βλ)2t∗

⩽
∑

i

(
βλ

αi
(1)

)2t∗ ∑
λ∈R2

αi+1n⩽λ1⩽αin

d2
λ.

Then by part (ii) of Lemma 4.2,∑
λ∈R2

d2
λ (βλ)2t∗

⩽
∑

i

(
βλ

αi
(1)

)2t∗

n(1− 3
2 αi+1)n.

Next, we bound the eigenvalues. For i = 0, 1 and 2, we have the following calcula-
tions by Lemma 4.4:

log βα0
(1) = log β( 2n

3 , n
3 ) ⩽

(
5
3 log 5

3 + 4
3 log 4

3 − 2 log 2
)

n ⩽ −0.15n,

log βα1
(1) = log β( n

2 , n
2 ) ⩽

(
3 log 3

2 − 2 log 2
)

n ⩽ −0.17n,

log βα2
(1) = log β( 2n

5 , 2n
5 , n

5 ) ⩽

(
14
5 log 7

5 + 6
5 log 6

5 − 2 log 2
)

n ⩽ −0.22n.

Further computations using (29) yield

(31)
2∑

i=0

(
βλ

αi
(1)

)2t∗

n(1− 3
2 αi+1)n = o(n−0.09n).
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For i ⩾ 3, since αi = 1
i , we can use the bound (30) to obtain

log βαi

(1) ⩽

(
1 + 1

2i
− 2 log 2

)
n.

Then by (29), ∑
i⩾3

(
βλ

αi
(1)

)2t∗

n(1− 3
2 αi+1)n

=
∑
i⩾3

exp
{(

2
log 2 − 4 + 1

i log 2 + 1 − 3
2(i + 1)

)
n log n

}
.

It is easy to see that the right-hand side is a decreasing function of i for i ⩾ 3.
Therefore, if we plug in i = 3 and carry out the calculations,∑

i⩾3

(
βλ

αi
(1)

)2t∗

n(1− 3
2 αi+1)n ⩽

∑
i⩾3

exp
{(

2
log 2 − 4 + 1

3 log 2 + 1 − 3
8

)
n log n

}
= o(n−0.008n).

Combining with (31), we eventually have∑
λ∈R2

d2
λ (βλ)2t∗

= o(n−0.008n).

4.4.3. Region 3. This region is treated very similar to Region 2. We consider the
second set of partitions (26) this time with the same choice of αi’s as in the previous
case.

By the dominance order relations (27) mentioned above, we have∑
λ∈R3

d2
λ (βλ)2t∗

⩽
∑

i

(
βλ

αi
(2)

)2t∗ ∑
λ∈R3

αi+1n⩽λ1⩽αin

d2
λ.

By part (i) of Lemma 4.2,∑
λ∈R3

d2
λ (βλ)2t∗

⩽
∑

i

(
βλ

αi
(2)

)2t∗

n(1−αi+1)n.

For i = 0, we can bound the eigenvalue by direct calculations,

βα0
(2) = β( 2n

3 , n
6 , n

6 ) =
2∏

i=1

n/6∏
j=1

n − i + j
5n
3 + (i − 1) n

6 + j − 1

⩽ C

( 7
6
)14n/6 ( 5

3
)5n/3

22n
,

which follows from the proof of Lemma 4.4. Similarly,

βα1
(2) =β( n

2 , n
4 , n

4 ) ⩽ C

( 5
4
)5n/2 ( 3

2
)3n/2

22n
,

βα2
(2) =β( 2n

5 , n
5 , n

5 , n
5 ) ⩽ C

( 6
5
)18n/5 ( 7

5
)7n/5

22n
.
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Therefore,

log βα0
(2) ⩽

(
14
6 log 7

6 + 5
3 log 5

2 − 2 log 2
)

n ⩽ −0.175n,

log βα1
(2) ⩽

(
5
2 log 5

4 + 3
2 log 3

2 − 2 log 2
)

n ⩽ −0.22n,

log βα2
(2) ⩽

(
18
5 log 6

5 + 7
5 log 7

5 − 2 log 2
)

n ⩽ −0.25n.

Then we have

(32)
2∑

i=0

(
βλ

αi
(2)

)2t∗

n(1−αi+1)n = o(n−0.005n).

For i ⩾ 3, we apply Lemma 4.4 and 4.5 to obtain

log βαi

(2) ⩽

(
1
2i

log
(

1 + 1
2i

)
+ 2i

(
1 + 1

2i

)
log
(

1 + 1
2i

)
− 2 log 2

)
n

=
((

2i + 1 + 1
2i

)(
1
2i

− 1
8i2 + 1

24i3 − 1
64i4 + · · ·

)
− 2 log 2

)
n

⩽

(
1 + 1

4i
+ 5

24i2 − 2 log 2
)

n.

Then by (29),
12∑

i=3

(
βλ

αi
(2)

)2t∗

n(1−αi+1)n

=
12∑

i=3
exp

{(
2

log 2 − 4 + 1
2i log 2 + 5

12i2 log 2 + 1 − 1
(i + 1)

)
n log n

}
.

Now we observe that
2

log 2 − 3 + 5
12i2 log 2 ⩽

2
log 2 − 3 + 5

108 log 2 < 0,

for i ⩾ 3. One can also verify that 1
2i log 2 − 1

(i+1) is an increasing function of i for
i ⩾ 3. Therefore, we can plug in i = 12 to obtain an upper bound.

12∑
i=3

(
βλ

αi
(2)

)2t∗

n(1−αi+1)n ⩽
12∑

i=3
exp

{(
1

144 log 2 − 1
13

)
n log n

}
= o(n−0.06n).

Putting together with (32), we have∑
λ∈R3

d2
λ (βλ)2t∗

= o(n−0.005n).

4.4.4. Region 4. The cases covered above allows us to conclude that if t ⩾ 2
log 2 log n,

Region 4 determines the convergence rate. Take t = log n
log 2 + γ for γ > 0.

Let m = n − λ1. Then we have

β(λ1,n−λ1) =
m∏

j=1

n + j − 1
2n − m + j − 1

⩽

(
n + m

2n

)m
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Using the fact that log(1 + x) < x,

(33) log β(n−m,m) ⩽ m
[
− log 2 + log

(
1 + m

n

)]
⩽ −m log 2 + m2

n
,

which implies

β2t
(n−m,m) = β

2 log n
log 2

(n−m,m) β2γ
(n−m,m) ⩽ n

2m2
n log 2 −2m β2γ

(n−1,1)

⩽ n
2m2

n log 2 −2m

(
1
2

)2γ

.

Therefore, by Lemma 4.1 and (33),∑
λ∈R4

d2
λ β2t

λ =
∑

2n/3⩽λ1⩽n−1

d2
λ β2t

λ

⩽

(
1
2

)2γ n/3∑
m=1

(
n

m

)2
m! n

2m2
n log 2 −2m.

To bound the factorial term, we employ the fact
(

n
m

)
⩽ nm

m! ,

∑
λ∈R4

d2
λ β2t

λ ⩽
1
4γ

n/3∑
m=1

n2m

m! n
2m2

n log 2 −2m

= 1
4γ

n/3∑
m=1

n
2m2

n log 2

m! .

An application of Stirling’s formula gives

∑
λ∈R4

d2
λ β2t

λ ⩽
1
4γ

1 + 1
2 + e√

2π

n/3∑
m=3

1
m3/2

em−1n
2m2

n log 2

mm−1 + O(n1/n)

 .

Let

f(m) = log
(

em−1n
2 m2

n log 2

mm−1

)
= (m − 1) + 2m2 log n

n log 2 − (m − 1) log m.

Next we show that f(m) is less than 0 in the range of the sum. Taking derivatives,
we have

f ′′(m) = 4 log n

n log 2 − 1
m

− 1
m2 > 0

for m ⩾ 3. Therefore f is a convex function, so

f(m) ⩽ max{f(3), f(n/3)}

for all m ∈ [3, n/3]. It is easy to check that both f(3) and f(n/3) are less than zero,
hence f is strictly smaller than zero in the range of the sum. As a result of this,

∑
λ∈R4

d2
λ β2t

λ ⩽
1
4γ

1 + 1
2 + e√

2π

n/3∑
m=3

1
m3/2 + O(n1/n)


⩽

1
4γ

(
1 + 1

2 + e√
2π

(ζ(3/2) − 1)
)

⩽
1

4γ−1 .

Algebraic Combinatorics, Vol. 6 #4 (2023) 925



Alperen Özdemir

Finally, by (9) we have

dn

(
log n

log 2 + γ

)
=
∥∥∥∥P

log n
log 2 +γ

θ − π

∥∥∥∥
T V

⩽
1
4γ

.

Combining with (22), we conclude that the chain has a total variation cutoff. This
concludes the proof of Theorem 1.1 part (ii).

5. Conclusion
The Plancherel growth process does not seem to be fully exploited in this context.
Further work could require estimates on the moments of contents with respect to the
transition measure. Some explicit formulae for the moments are provided in [19]. The
computations in Section 4.2 suggests the following:

Conjecture 5.1. Let Pθ be the Markov chain on Sn defined in (1).
(i) If θ(n) = O(nβ) for some β < 1, then the mixing time is bounded above by a

constant independent of n.
(ii) If n = O(θ(n)), then the chain has a total variation cutoff at tn =

log n
log(n+θ(n))−log θ(n) with a window of size 1

log(n+θ(n))−log θ(n) .

To compare it to a well-known example, we expect that Pθ has the same rate of
convergence with the random transposition walk on the symmetric group [11] provided
that limn→∞

θ(n)
n2/2 = 1.
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