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A polynomial construction of perfect

sequence covering arrays

Aidan R. Gentle

ABSTRACT A PSCA (v, t, \) is a multiset of permutations of the v-element alphabet {0,...,v—1}
such that every sequence of ¢ distinct elements of the alphabet appears in the specified order
in exactly A\ permutations. For v > ¢, let g(v,t) be the smallest positive integer A such that a
PSCA(v,t, ) exists. Kuperberg, Lovett and Peled proved g(v,t) = O(v!) using probabilistic
methods. We present an explicit construction that proves g(v,t) = O(v*(t=2)) for fixed ¢ > 4.
The method of construction involves taking a permutation representation of the group of projec-
tivities of a suitable projective space of dimension ¢t — 2 and deleting all but a certain number of
symbols from each permutation. In the case that this space is a Desarguesian projective plane,
we also show that there exists a permutation representation of the group of projectivities of the
plane that covers the vast majority of 4-sequences of its points the same number of times.

1. INTRODUCTION

For positive integers v and ¢t with v > ¢, let [v] = {0,...,v — 1}, S, be the group of
permutations of [v], and S, be the set of ordered sequences of ¢ distinct elements
of [v]. Unless stated otherwise, permutations are assumed to be written in one-line
notation with 7 € &, being denoted by (7(0),nw(1),...,m(v — 1)). Additionally, the
elements of a sequence s € S, are denoted by (s1,...,s:). For m € S, and s €
S, we say that 7 covers s if 7= 1(s;) < m Y(s;31) for i € {1,...,t — 1}. Several
aspects of sequence covering have been studied including the problems of finding
packings, coverings and perfect coverings of sequences. In this context, a packing is a
set of permutations in S, such that every sequence in S, ; is covered by at most one
permutation. In coding theory, these sets are referred to as (v —t)-deletion correcting
codes [8, 11]. A covering of sequences is a set of permutations in S, such that every
sequence in S, + is covered by at least one permutation. These sets are referred to as
sequence covering arrays and were first studied by Spencer [15] as an extension of a
problem studied by Dushnik [3] relating to the dimension of certain partial orders.
More recently, sequence covering arrays have been investigated for their applications
in event sequence testing [9].

In this paper, we are concerned with the problem of perfect coverings of sequences.
A perfect sequence covering array with order v, strength ¢ and multiplicity A, denoted
by PSCA(v,t, ), is a multiset X of permutations in S, such that every sequence in
Sy,1 is covered by exactly A permutations in X. If T is a t-subset of [v], then there are ¢!
ways of arranging the elements of T, each of which forms a sequence in S, ; that must
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be covered by A permutations in a PSCA(v, ¢, A). Furthermore, every permutation in
a PSCA(v,t,\) covers exactly one of these sequences, so a PSCA (v, ¢, \) must contain
t!\ permutations.

For v > t, let g(v,t) be the smallest positive integer A such that a PSCA(v,t, \)
exists. Observe that S, is a PSCA(v,t,v!/t!), so g(v,t) is well defined and g(v,t) <
vl/t!. Much of the research into perfect sequence covering arrays has focussed on
determining or bounding ¢(v, t). By writing a permutation in S, in one-line notation,
we can form a permutation in S,_1 by removing the symbol v — 1 from the initial
permutation and shifting each symbol that appeared to the right of v — 1 one position
to the left. If v > ¢ and we perform this symbol deletion to each permutation of a
PSCA(v,t,\), then we obtain a PSCA(v — 1,¢, \). Hence, g(v,t) > g(v — 1,t). For
2 <t <t,a PSCA(v,t,A) is also a PSCA(v, ¢/, A(})), so g(v, ') < (/) g(v,1t).

In this paper, we present an explicit construction of a PSCA(v,t, A) for allv >t >
4. The method of this construction involves taking a suitable permutation represen-
tation of the group PGL(t — 1, ¢) of projectivities of the projective space PG(t — 2, q).
We show that in such a permutation representation, there is a subset of ¢+ 1 symbols
such that any t-sequence of symbols from this subset is covered by A permutations
for a given constant \. Hence, deleting all but the symbols in this subset forms a
PSCA(q + 1,t,\). This construction yields the following upper bound on g(v, t).

THEOREM 1.1. Forv >t > 4,

(21})“_1)2

90D < 45—y

This bound is derived through purely constructive means however, a probabilistic
upper bound does exist. A t-wise uniform set of permutations is a set T' C S, such
that for any a,b € S, 4,

1
T

A t-wise uniform set of permutations T C S, is also a PSCA(v, t, |T|/#!). Kuperberg,
Lovett and Peled [10] proved that for any ¢t < v, there is a t-wise uniform set of
permutations T C S, with |T| < (cv)“* for some universal constant ¢ > 0. Although
this result gives a tighter bound on g(v,t) than Theorem 1.1, it is not yet known how
to efficiently construct either a PSCA or a t-wise uniform set of permutations with
this size.

Recently, Turlano [7] has established an equivalence between PSCAs of strength ¢
and families of t-rankwise independent permutations. Iurlano also uses a construction
of Itoh, Takei and Tarui [6] of t-rankwise independent permutations to build PSCAs

t!
{reT:m(a;)) =0b;,1<i<t} = =
v!

with vO®* /1" t) permutations.

Our construction can also be applied when ¢ = 3. However, an infinite family
of PSCA(v,3, ) built by Yuster [17] established that g(v,3) < cv(logv)!°87 for an
absolute constant c. This result provides a tighter bound on g(v, 3) than Theorem 1.1
would, were it to be extended to the t = 3 case.

In proving Theorem 1.1, we show that sequences of ¢ points of PG(t — 2,¢) be-
longing to a particular family are covered by a constant number of permutations in a
representation of PGL(t — 1,¢). In the ¢ = 4 case, we can choose a particular repre-
sentation of PGL(3, ¢) to ensure that sequences of four points of PG(2,¢) belonging
to a separate family are also covered by the same constant number of permutations.
Although accounting for this new family of sequences does not provide a substantial
improvement to the bound g(v,4) = O(v®) implied by Theorem 1.1, it does prove the
following theorem.

Algebraic Combinatorics, Vol. 6 #5 (2023) 1384



A polynomial construction of perfect sequence covering arrays

THEOREM 1.2. Let ¢ be a prime power and let r = ¢*> + q¢ + 1. Then there is a
permutation representation ¥ < S, of PGL(3,q) such that the number of sequences
in Sy4 that are covered by exactly |U|/4! permutations in G is greater than

1
(1 Yisu
q

In building a PSCA(v, 4, \), we take a prime power ¢ such that ¢ > v, find a suitable
permutation representation of PGL(3, ¢) in 24441 and then delete all but v symbols
from each permutation in this group. As a consequence of this symbol deletion, the
number of permutations in the resulting PSCA on v symbols is approximately v®.
Theorem 1.2 implies that it is possible to find a set of permutations in S, with size
approximately v* such that the vast majority of 4-sequences are covered by a constant
number of permutations. This reduced size is much closer to the lower bound proved
by Yuster [17], which says that g(v,4) > v(v — 3)/48. However, as the permutation
representation presented in Theorem 1.2 may or may not be a PSCA, it is still unclear
what the asymptotic behaviour of g(v,4) should be.

In addition to the asymptotic results cited above, research in this area has un-
covered exact values of g(v,t) [4, 11, 12, 13, 17] as well as the non-existence of a
PSCA(v,t,\) [2, 4, 8, 12] for certain choices of v, t and .

The paper is organised as follows. In Section 2, we introduce notation and some
basic ideas that lay the groundwork for the constructions in the subsequent sections.
In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2.

2. PRELIMINARIES

We begin by recalling some definitions regarding group actions. For a set X, let
Sym(X') denote the group of permutations of X. Note that when X = [v], Sym(X) =
Sy. An action of a group G on X is a homomorphism ¢ : G — Sym(X). For g € G
and z € X, we use gz to refer to the image of  under the permutation ¢(g). The
orbit of x is the set Orb(x) := {gz : g € G}. The stabiliser of z is the set Stab(z) =
{g € G : gr = z}. The stabiliser of x forms a subgroup of G. In what follows, we
make use of the Orbit-Stabiliser Theorem.

THEOREM 2.1. If G is a group acting on X, then for any x € X,
|Orb(x)||Stab(z)| = |G|.

A permutation group G < S, has the following natural action on S,, ;. If g € G and
s € Sy, then gs = (g(s1),...,9(s¢)). Consider an array A with columns indexed by [v]
and rows indexed by the elements of G where Alg,i] = ¢(i). Let s € S, and consider
the corresponding sequence of columns of A. In row g and in columns (sq,...,st) of
A, we find the sequence (g(s1),...,9(st)) = gs. So the sequences that appear in the
columus (s1,...,s:) of A are exactly those in Orb(s). For « € Orb(s), the set of rows
of A in which the sequence x appears in the columns (s1,...,s;) is {g : gs = «}. This
set is a coset of Stab(s) so it must have the same size as Stab(s). The permutation g
covers gs if and only if s; < --- < s;. Define Asc(s) := {x € Orb(s) : 21 < -+ < ¢ }.
We now have the following lemma.

LEMMA 2.2.If G < S, is a permutation group and s € S,, then the number of
permutations in G that cover s is |Asc(s)||Stab(s)|.

To conclude this section, we consider deleting symbols from permutations. For
m €8, and j € [v], we define 7[; to be the permutation in S; obtained by deleting
the symbols {j,j+1,...,v—1} from 7. The permutation f;; covers a sequence s € Sj ¢
if and only if 7 also covers s. If X is a multiset of permutations in S, then for j € [v],
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we define X[;) to be the multiset {7}; : 7 € X}. Then, for any sequence s € S; ;, the
number of permutations in X; that cover s is equal to the number of permutations
in X that cover s. In the next section we construct a PSCA of strength ¢ by deleting
symbols from a suitable multiset of permutations.

3. COLLINEATIONS OF PROJECTIVE SPACES

In this section we prove Theorem 1.1. We begin by introducing some definitions re-
garding projective spaces. Let ¢ = p™ for some prime p and for some integer m > 1
and let GF(q) be the field with g elements. Now let n > 2 and let V be an (n + 1)-
dimensional vector space over GF(q). Then the n-dimensional projective space over
GF(q), denoted by PG(n,q) is the set of all 1-dimensional subspaces of V. The el-
ements of PG(n,q) are called points. If W is a subspace of V', then W forms a set
of points in PG(n,q) with W containing the point X if X is a subspace of W. A
2-dimensional subspace of V forms a line in PG(n, ¢) and an n-dimensional subspace
of V forms a hyperplane in PG(n,q). A collineation of PG(n,q) is a permutation of
the points of PG(n, ¢) that maps lines to lines. Let A € GL(n+1, ¢) be a non-singular
matrix and suppose that Au = v for vectors v € X and v € Y where X and Y are
points in PG(n, ¢). Then A(cu) = cv for ¢ € GF(gq). Thus, every vector in X is mapped
by A to a vector in Y. Hence, A induces a permutation of the points of PG(n, q). Per-
mutations formed in this way are called projectivities. The set of all projectivities of
PG(n, q) forms the group PGL(n +1,q). A frame of PG(n, q) is an ordered sequence
of n+2 points in PG(n, ¢) such that no n+1 of these points lie in the same hyperplane
of PG(n,q). The following theorem is a statement of the Fundamental Theorem of
Projective Geometry (see e.g. [5]).

THEOREM 3.1. For any two frames in PG(n,q), there is a unique projectivity of
PG(n,q) mapping one frame to the other.

Let r be the number of points in PG(n, ¢). Projectivities are defined as permuta-
tions of the points of PG(n, ¢) but we can view projectivities as permutations of [r] by
labelling the points of PG(n, q). For a bijection ¢ : PG(n,q) — [r] and a projectivity
f, define fy, € S, by fy(i) = ¥ (f(¥p71())). Then let ¥ = {fy : f € PGL(n + 1,9)}.
Note U is a permutation subgroup of S,.. The order of ¥ is given by

n n+1l _ 1
W) = [PGL(n + 1, = =@ =)
q—
By establishing the bijection v, points of PG(n, q) are associated with elements of [r]
and so we can treat lines and hyperplanes as subsets of [r] and frames as sequences
in Sr,n+2-

LEMMA 3.2. For a bijection 1 : PG(n,q) — [r] and a frame s € S, 12, the number of
permutations in U that cover s is |¥|/(n + 2)!.

Proof. By Theorem 3.1, every frame in S, ;2 is part of the same orbit under the
action of W. For any frame s € S, 42, any reordering of the points of s will form
another frame. Of all the (n + 2)! ways of ordering the points of s, only one of these
sequences is in ascending order. Thus, |Asc(s)| = |Orb(s)|/(n + 2)!. Therefore, by
Lemma 2.2, the number of permutations in ¥ that cover s is

_ [Stab(s)||Orb(s)] _ [P
(n+2)! (n+2)

[Stab(s)||Asc(s)] O

A Ek-arc in PG(n,q) is a set of k points in PG(n,q), no n + 1 of which lie in a
hyperplane of PG(n, q).
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THEOREM 3.3 (e.g. [1]). For g = n, there exists a (¢ + 1)-arc in PG(n, q).

LEMMA 3.4. For ¢ > n+ 1, if ¥ : PG(n,q) — [r] is a bijection such that {{p=1(i) : i €
l[q +1]} is a (g + 1)-arc, then W44y is a PSCA(q+ 1,n +2,[¥[/(n +2)!).

Proof. Let s € Sgi1,n+2 and let 9 be as defined in the lemma statement. Then s
is a frame. Thus, by Lemma 3.2, s is covered by |¥|/(n + 2)! permutations in W.
Hence, s is covered by |¥|/(n + 2)! permutations in W[, ). Therefore, ¥, q; is a
PSCA(q+1,n+2,|T|/(n + 2)!). O

Note that for ¢ > n 4+ 1, Theorem 3.3 guarantees the existence of a bijection
satisfying the condition of Lemma 3.4. We are now ready to prove Theorem 1.1

Proof of Theorem 1.1. Let q be the smallest power of 2 such that ¢ > v. Then g < 2v.
Let n =t — 2. Then, by Lemma 3.4,

IPGL(n+1,q)] _ [PGL(t—1,20)]  [[:Z5((2v)' "t — (20)) _ (20)¢—V°

g(’lht) < (n i 2)! < ! - t!(2v — 1) t!(QU — 1) '

O

4. ALMOST PERFECT 4-SEQUENCE COVERING ARRAYS

We now focus specifically on the case where n = 2. That is, we consider sequences
of four points in PG(2,¢q). In the previous section, we present a construction of a
PSCA(v,4,)\) with O(v®) permutations. In this section, we adjust this construction
such that the size of the new construction is O(v?). In this new construction we can
guarantee that almost all sequences are covered by the same number of permutations
(see Theorem 1.2). This shows that we can greatly reduce the size of the construction
in Section 3 when t = 4 while still ensuring that most sequences are covered by the
same number of permutations.

The sequences now under consideration are those containing four points of PG(2, g).
These sequences can be divided into three families. The first family contains all se-
quences of four points such that no three are collinear. As hyperplanes and lines are
the same in PG(2, ¢), these sequences are frames. By Lemma 3.2, in any permutation
representation ¥ < S, of PGL(3,¢) as defined in Section 3, any frame is covered by
|¥|/24 permutations. The second family contains all sequences with three collinear
points but not four. The third family contains all sequences of four collinear points.

Let 7 = ¢> + ¢ + 1 be the number of points in PG(2,q). A difference set of Z, is
a set A = {aop,a1,...,a4} C Z, such that for any non-zero element = € Z,, there
are ¢ and j such that a; — a; = x. For any prime power ¢, it is possible to label
the points of PG(2,q) such that the labelled lineset has the form {{a; +j : i €
[g+ 1]} : j € Z,}, where A = {aop,...,aq} is a difference set of Z, and addition is
performed modulo r [14]. Let ¢ be such a labelling. In this section we show that in
the corresponding permutation representation ¥ < S, of PGL(3,q), each sequence
containing at most three collinear points is covered by |¥|/24 permutations. This in
turn proves Theorem 1.2.

The consequence of this result is that for fixed v, we can find a much smaller mul-
tiset of permutations than the multiset built in Section 3 such that the vast majority
of sequences are covered by a constant number of permutations. This prompts two
immediate questions. The first is whether the bound in Theorem 1.1 can be reduced
specifically when ¢t = 4. Indeed, in Section 3, our construction relied on reducing the
point set to a subset where no three points lay on the same hyperplane. Here, it seems
we can relax that condition to one that requires that no four points lie on the same
line. A (k,d)-arc in PG(2,q) is a set of k points in PG(2,¢), no d + 1 of which lie
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on the same line. Thus, we can build a PSCA of strength 4 by taking the represen-
tation ¥ and deleting all but a subset of symbols that form a (k,3)-arc. The size of
a (k,3)-arc in PG(2,q) is at most twice the size of the arc used in the construction
in Section 3 (i.e. 2(¢ + 1)) [16]. Hence, adapting the construction in Section 3 would
only yield an improvement on the bound in Theorem 1.1 by a constant factor of at
most 28 when t = 4.

The second question is whether the permutation representation ¥ may actually
form a PSCA by covering sequences containing four collinear points with the same
constant number of permutations. A computer search was performed over difference
sets of Z, for prime power orders 4 < ¢ < 25. This search found no representations
of PGL(3,¢) that also formed a PSCA of strength 4. However, a representation of
PT'L(3,4) which forms a PSCA was presented by Gentle and Wanless [4]. The group
PT'L(3, q) is the product of PGL(3, ¢) with the group of field automorphisms of GF(q).
In particular, PT'L(3,4) is twice as large as PGL(3,4). Moreover, Gentle and Wanless
[4] also present examples of representations of PGL(3,2) and PGL(3,3) that form
PSCAs of strength 4.

The remainder of this section is devoted to a series of lemmas that collectively prove
Theorem 1.2. Consider sequences that contain three collinear points but not four. For
i € {1,2,3,4}, let T; be the set of sequences s of four points in PG(2, ¢) for which there
exists a line ¢ such that s; does not lie on ¢, but sy does for k € {1,2,3,4}\{i}. By
definition, if s € T}, then the points {sx : k € {1,2,3,4}\{i}} are collinear. However,
if j # i and s’ € Tj, then the points {s) : k € {1,2,3,4}\{¢}} are not collinear.
Therefore, s’ is not in the orbit of s under the action of PGL(3,q). The following
lemma addresses the case where s and s’ both belong to T;.

LEMMA 4.1. If s and s’ are sequences in T; for some i € {1,2,3,4} then there exists
a projectivity of PG(2,q) that maps s to s’.

Proof. Let {i,j,k,¢} ={1,2,3,4} and let s; = a, s; = b, sy =¢, sy =d and s, = d’,
si =V, s, =c, s, =d. Hence, both {a,b,c} and {a’,b’,c'} are sets of non-collinear
points. As such, the non-zero vectors u € a, v € b and w € ¢ form a basis of V, as do
the non-zero vectors v’ € a’, v' € b’ and w’ € ¢/. We can find a matrix A € GL(3, q)
such that Au = ', Av = v/ and Aw = w'. Let f be the projectivity of PG(2,q)
induced by A. Then f(a) = o/, f(b) = b and f(c) = ¢/. Let x € d. Since b,c and d
are collinear, © = av + fw for some non-zero «, 5 € GF(q). Hence, Az = av’ 4+ fw’.
Let ' € d’ and similarly note that 2’ = o’v' + 8w’ for some non-zero o', 8’ € GF(q).
We can then find a matrix B € GL(3,q) such that Bu' = u/, Bv' = a~'a/v’ and
Bw' = f718'w’. Then, BAz = o/v' + B'w’ = 2’. Let g be the projectivity induced by
B and observe go f(a) =a’, go f(b) =V, go f(c) = and go f(d) = d'. Therefore,
the projectivity g o f maps s to s’. (]

Now we choose some bijection 9 : PG(2,q) — [r] and consider the corresponding
permutation group ¥ < S,. Let L be the subsets of [r] corresponding to lines of
PG(2,q). Then each line £ € L can be represented by ¢ = {{g,...,{;} C [r] where
by <l < --- <L, Our next goal is to find |Asc(s)| for s € T;. First consider T;. Let
¢ € L and let i € [q+ 1]. There are (") 3-subsets of ¢ that have ¢; as their minimal
element and there are ¢; — i points less than ¢; that do not lie on ¢. Therefore,

(E1) Asce(s)| =) (q ) Z) (6; — i) for s € T1.

leL i=0

Next, consider T5. Suppose we build a sequence in 75 containing three points on /¢
such that ¢; is the minimum of these points. Then, for j > i, there are ¢ — j points

Algebraic Combinatorics, Vol. 6 #5 (2023) 1388
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on { greater than ¢; and (¢; — j) — (¢; — i) points between ¢; and ¢; that do not lie on
£. Therefore, for s € Ty,

Asc(s)| =D Y (=) — ) — (L —1i))

leL 0<z<]<q
qg—1 q qg—1 q
-> (=)t + (¢ —j)i

Therefore,

(E2) Ase(s)] = 3 Z ( (q ) ’)) (6 — i) for s € Th.

lel i=0

Next, consider T5. Suppose we build a sequence in T3 containing three points on /¢
such that ¢; is the maximum of these points. Then, for ¢ < j, there are ¢ points on
¢ less than ¢; and (¢; — j) — (¢; — %) points between ¢; and ¢; that do not lie on £.
Therefore, for s € T3,

|Asc(s) |—Z Z ((€; —J) — (b =)

LeL 0<i<j<q

Jj—1 q j—1 -1 q -1 q
= ST =i =Y Y iy Y P
teL \j=1i=0 j=1i=0 i=0 j=i+1 i=0 j=i+1
q . . qg—1
-2 (2 (()s-(2)) -2 tta-ve a0
eL \j=1 i=0
Therefore,
(E3) |Asc(s)| = ZZ (( ) z)) (4; — 1) for s € Ts.
LeL i=0

Finally, consider Ty. Let ¢ € L and let i € [¢ 4+ 1]. There are (;) 3-subsets of /¢
whose maximum is #; and there are ¢> + ¢ — £; — (¢ — i) points greater ¢; that do not
lie on £. Therefore,

(E4) |Asc(s |_ZZ(> — 1)) for s € Ty.

el i=0
Therefore,
q Z )
(E1) + (E2) + (E3) + (E4) ZGZL;) (2>q
(P Hg+DP(g+ 1) (g - 1)
(E5) = : .
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Later in this section, we will prove the existence of a particular representation ¥
such that (E1) = (E2) = (E3) = (E4). Our first step is to equate (E1) + (E4) and
(E2) 4+ (E3) for which we require the following lemma.

LEMMA 4.2. Let L be the lineset of PG(2,q) as subsets of [r]. Then,

3 zq:ié, (P + (@ +q+1)(2¢° +29+1)

;=
£eL i=0 6
Proof. Let j € [r] and let J = {(,{) : £; = j}. Consider }_; ) ;i¢;. For each pair
(i,£) € J, ¢; = j and ¢ is the number of points less than j that lie on £. There are j
elements of [r] less than j, each of which must lie on the same line as j exactly once.

Therefore,
> =g > =i
(5,0)€T (5,0)€T
Therefore,
q ’+q 2 2 2
1)(2 2 1
ZZ‘&:ZJ'Q:(Q + ) +¢I+6)(Q+ q+1) 0

teL i=0 j=
LEMMA 4.3. In any representation ¥, (E1) + (E4) = (E2) 4+ (E3) = (E5) /2.
Proof. Using the expressions (E2) and (E3),

R ORI

tel k=0
- %ZZ (2k(q—1) = (¢° — @) (bx — k).
leL k=0

First, consider

SN (6 = a) (ke — k).

LEL k=0
The sum Y, >f_ {x is just the sum of all the points of every line of PG(2,¢). Each

point appears on ¢+ 1 lines so this is equal to (q2+2q+1) (q+1). Next, >y D0 k=
(> +q+1) (q'gl). Therefore,

qu:(qQ—q)(Ek—k):(qQ—q) (<q2 +2q+1)(q+1)—<q2+q+1)(q;1>>

el k=0
*+q q)

:(q2+q+1)(q2—q)(q+1)< 2 2

1
= 5((12 +q+1)(¢* — q9)d*

Next, consider

> zq: k(ly — k).

£eL k=0
By Lemma 4.2, this is equal to

(> +q+1)(¢* + )¢

1
@+ +q+1)(2¢° +2q+1—-2¢—1) = 3

6
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Therefore,

@@+Gﬁyzé<ﬂf+9+nwg@f_(f+q+D@3@f>

3 2
_ (@ +a+ D@ -9
12
= (E5)/2.
As (E1) + (E2) + (E3) + (E4) = (E5), it must also be true that (E1) + (E4) =
(E5)/2. O

Lemma 4.3 applies generally to any representation of PGL(3, ¢), but now we will
choose a specific representation according to a difference set of Z,. Recall that a
difference set is a set A = {ag,a1,...,aq} C Z, such that for any non-zero element
x € Zy, there are ¢ and j such that a; —a; = x. For the rest of this section, we choose
1 such that the lines of PG(2, ¢) are mapped to sets of the form {a; +j : 7 € [¢+ 1]}
for j € Z, and a difference set A = {ao, ..., a,} where a; < a;41 for i € {0,...,g—1}.
Furthermore, we can assume without loss of generality that ag = 0. Let A + j denote
the line {a; +j : i € [¢ + 1]}. For any integer k, define ayq41)+i = ai.

Our goal is to show that for this particular choice of %, in the corresponding
permutation subgroup ¥ < S,, (E1) = (E2) = (E3) = (E4). This will be done by

proving that for i € [q + 1]
Z(qz +q—"Lg-i) = Z&w
teL teL

To do so, we first require the following lemma.

LEMMA 4.4. For the difference set A = {ag,a1,...,aq} C Z,, and for i € [g+ 1],

q

(1) D (anri —ap)(ax — ag—1) = Y (ar+1 — ax)(ar — ar—)

k=0 k=0
Proof.

M=

> (akri — ax)(ak — ap—1) =

k=0

2
(Qhtiar — QpyiQr—1 — Qi + apar—_1)

i
o

I
B

2
(akar—i — Qry1ak—; — aj + pr1ak)

>
Il
o

|
M=

(ak+1 — ag)(ar — ag—q). O

o>~
Il
o

LEMMA 4.5. Let L = {A+j : j € Z,} for the difference set A = {ao,...,aq4}. For
i€lg+1]

(2) DU +a—Le) =D b

LeL leL

Proof. First, we consider ) ,_; ¢; for i € [q + 1]. Consider the values of j for which
ar + 7 is the smallest element of A + j. First, when j = ¢> + ¢ + 1 — ay, the smallest
element of A+4j is ax+j = 0. Then, when j = ¢?+q+1—ax_1 —1, the smallest element
of A+jis ar+j = ar —ar—1 — 1 and the largest element of A+ j is ar—1+j = ¢ +q.
Hence, the smallest element of A + (j + 1) would be ax—1 + (j + 1) = 0. So, for
je€l@+q+1—agq¢®+q— ar_1], the smallest point on the line A + j is ax + j.
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The ith smallest point on these lines will therefore be ax; +j and will range in value
from apy; — ag to ag4; —ar—1 — 1. The sum of the integers in this interval is

ap — Gj—
( ¥ 9 ¥ 1) + (arts — ax)(ar — ap—1).

Therefore,

S o= zq: ((a’“ 2“’“*) + (apss — ax)(ay — ak_l)) .

leL k=0

Similarly, the range of values for j for which ay + j is the largest point of the line
A + j is the interval [¢®> + ¢+ 1 — axy1,q°> + ¢ + 1 — a, — 1]. For these lines, the
ith largest point is aj_; + j which ranges in value from ¢? + ¢+ 1 + ap_; — ap41 to
¢*> + g + ap—; — aj. Therefore,

q @ +q—axk
DU Ha—Lei) =) > (¢* + g — (ar—i + 7))
tel k=0 j=q¢?>+q+1—ap41

q ak+17ak,71

Z Z (ar, — agp—i +7)
k=0

j=0

((a’“rl; ak) + (ak+1 — ar)(ax — ak_i)) .

q

>

0
By Lemma 4.4,
2 ([ — ax
Z;(q +q—Lyi) = kZ:O (( ) ) + (arri — ar)(ay, — ak1)> = Z;e O

Now we can prove that for this choice of ¥, (E1) = (E2) = (E3) = (E4).

LEMMA 4.6. Let ¢ : PG(2,q) — [r] be a bijection such that the lines of PG(2,q) are
mapped to the sets {A+j : j € Z,} for the difference set A = {ao,...,aq}. Then,
(E1) = (E2) = (E3) = (E4) = (E5)/4.

Proof. We can substitute (2) into (E4) and obtain
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By Lemma 4.3, (E1) + (E4) = (E5)/2. Therefore, (E1) = (E4) = (E5)/4. We can also
substitute (2) into (E3) and find

E3) =) | > ity =) —(ti—1)

leL \0<i<j<gq

=> | D i@ Ha—ty— )~ (@ +a—lgi—1))

teL \0<i<j<q

= Z i((fq_i —(g—1)) — (Zq—j —(q _J)))

reL \0<i<j<q

=SS @D -5 )

teL \0<i<j<q
= (E2).
Again, by Lemma 4.3, (E2) + (E3) = (E5)/2. Therefore, (E2) = (E3) = (E5)/4. O

We are now ready to prove Theorem 1.2

Proof of Theorem 1.2. If ¢ is of the form outlined in Lemma 4.6, then under the
action of ¥ on S, 4, and for ¢ € {1,2,3,4} and s € T},

4 24
Now consider Stab(s) and note that |Stab(s)| = |PGL(3,q)|/|T;|. There are (¢ +
1)g(q — 1) 3-sequences that can be formed from points of a given line ¢. There are
then ¢? points not on ¢. Therefore,

IT5| = (¢* + g+ 1)’ (g + 1)(q — 1).

Thus,

| (@®+a+ 1) (a+1(e—1) |9
(¢ +q+1)g(g+1)(g - 1) 24 24°
Thus, by Lemma 2.2, every sequence in T; for ¢ € {1,2,3,4} is covered by |¥|/24
permutations in V. By Lemma 3.2, we also know that every frame in S, 4 is covered
by |¥|/24 permutations in ¥. Moreover, by Theorem 3.1, the number of frames in
Sy 4 is exactly

[Stab(s)||Asc(s)| =

IPGL(3,9)| = (¢* + ¢ + 1)¢* (g + 1) (g — 1)*.
Adding this to the number of sequences in T; for ¢ € {1,2,3,4} we find that the
number of sequences in S, 4 that are covered by exactly |¥|/24 permutations in V¥ is
at least

(@®+q+1)¢*(g+1)(q—1)(q +3).
We divide this number by |S,.4| and conclude

(@ +a+ D@+ Dg=1(g+3) _  (P+g+1)e*(g+1)(g— V(g +3)
|Sra (@*+a+1)(@+a)(®>+a—1)(*+q—-2)
__ ¢*(g+3)
(> +q—1)(¢+2)
q
g+ 1
This completes the proof. O
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