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Generalization of the addition and
restriction theorems from free arrangements

to the class of projective dimension one

Takuro Abe

Abstract We study a generalized version of Terao’s addition theorem for free arrangements to
the category of those with projective dimension one. Namely, we give a formulation to deter-
mine the algebraic structure of the logarithmic derivation module of a hyperplane arrangement
obtained by adding one hyperplane to a free arrangement under the assumption that the ar-
rangement obtained by restricting onto that hyperplane is free too.

Also, we introduce a class of stair-strictly plus-one generated (SPOG) arrangements whose
SPOGness depends only on the intersection lattice similar to the class of stair-free arrangements
which satisfies Terao’s conjecture.

1. Introduction
Let K be a field, V = Kℓ, and S = Sym∗(V ∗) = K[x1, . . . , xℓ] be the coordinate ring
of V . For the derivation module DerS := ⊕ℓ

i=1S∂xi
and a hyperplane arrangement

A = {H1, . . . ,Hn}, where Hi is defined as the zero locus of a non-zero linear form
αHi ∈ V ∗, the logarithmic derivation module D(A) of A is defined by

D(A) := {θ ∈ DerS | θ(αH) ∈ SαH (∀H ∈ A)}.
The module D(A) is an S-graded reflexive module of rank ℓ, but not free in general. So
we say that A is free with exponents exp(A) = (d1, . . . , dℓ) if D(A) ≃ ⊕ℓ

i=1S[−di].
In this article exp(A) is a multiset. Also in this article, we assume that all arrange-
ments are essential unless otherwise specified, i.e., ∩H∈AH = {0}. If A ≠ ∅, then
the submodule generated by the Euler derivation θE ∈ D(A) forms a direct summand
ofD(A). Explicitly,D(A) = SθE⊕DH(A), whereDH(A) := {θ ∈ D(A) | θ(αH) = 0}.
So we may assume that d1 = 1 = deg θE ⩽ di for i ⩾ 2 when an essential arrange-
ment A is free.

Free arrangements have been a central topic in the research of hyperplane arrange-
ments. Among them, the most important problem is so called Terao’s conjecture
asking whether the freeness of A depends only on the intersection lattice

L(A) := {∩H∈BH | B ⊂ A}.
In other words, Terao’s conjecture asks whether the freeness is combinatorial. This is
completely open, but it was shown in [15] that the minimal free resolution of D(A) is
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not combinatorial. To approach Terao’s conjecture, one of the main tools is Terao’s
addition-deletion theorem. For the purpose of this article, we exhibit it in a slightly
different way compared to its usual formulation:

Theorem 1.1 (Addition and restriction theorems, [11]). Let H ∈ A, A′ := A ∖ {H}
and let AH := {H∩L | L ∈ A′}. Assume that A′ is free with exp(A′) = (1, d2, . . . , dℓ).
Then the following two conditions are equivalent:

(1) A is free.
(2) AH is free and | exp(A′) ∩ exp(AH)| = ℓ− 1.

If one of these two conditions holds, then for di := exp(A′) ∖ exp(AH), it holds that

exp(A) = (1, d2, . . . , di−1, di + 1, di+1, . . . , dℓ),
exp(AH) = (1, d2, . . . , di−1, di+1, . . . , dℓ).

In general the condition | exp(A′)∩exp(AH)| = ℓ−1 above is described as exp(A′) ⊃
exp(AH). However, note that | exp(A′) ∩ exp(AH)| < ℓ − 1 often occurs even when
both A′ and AH are free. So we have the first question in this article:

Problem 1.2. Assume that A′ is free. Then which condition of D(A) makes AH free?
More precisely, are there any explicit condition for D(A) to make AH free when A′

is free in terms of freeness, projective dimension, free resolution and so on?

Also, recent developments show the following projective dimensional version of the
addition theorem. Note that A is free if and only if pd A = 0, where pd A denotes the
projective dimension of the S-module D(A).

Theorem 1.3 ([3, Theorem 1.11]). (1) Assume that pd A′ = pd AH = 0. Then
pd A ⩽ 1.

(2) Assume that pd A′ = 0 and pd A ⩽ 1. Then pd AH = 0.

Now we have the second question in this article which is related to Problem 1.2:

Problem 1.4. Can we describe the algebraic structure of D(A) when A′ and AH are
both free, but | exp(A′) ∩ exp(AH)| < ℓ− 1?

Explicitly, we want to know the minimal free resolution of D(A) under the above
conditions. Contrary to these problems, when A is free, we can describe D(A′), which
was proved in [4]. To see this result, let us recall the definition of strictly plus-one
generated (SPOG).

Definition 1.5 ([4]). We say that A is strictly plus-one generated (SPOG) with
POexp(A) = (1, d2, . . . , dℓ) and level d if there is a minimal free resolution of the
following form:

0 → S[−d− 1] (f1,...,fℓ,α)→ ⊕ℓ
i=1S[−di] ⊕ S[−d] → D(A) → 0.

Here d1 = 1, fi ∈ S and 0 ̸= α ∈ V ∗. For the set of generators θE , θ2, . . . , θℓ, θ with
deg θi = di and deg θ = d for the SPOG module D(A), θE , θ2, . . . , θℓ is called the set
of SPOG generators and θ the level element.

It was proved in [4] (see Theorem 2.4) that A′ is SPOG if A is free and A′ is not
free. Interestingly, in this case the structure of D(A′) is independent of that of D(AH).
However, in general A is neither free nor SPOG even if A′ is free. The typical example
is the case when A′ :

∏4
i=1 xi = 0 in V = R4. Then A is free with exponents (1, 1, 1, 1).

If you add H : x1 + x2 + x3 + x4 = 0 to A′ to get A, then it is well-known that A is
neither free nor SPOG. In fact pdS D(A) = 2 in this case.
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When pd A′ = pd AH = 0, then pd A ⩽ 1 by Theorem 1.3. Also Theorem 1.1 shows
that one additional condition for exponents confirms that pd A = 0. So a weaker
condition for exponents when pd A′ = pd AH = 0 could determine the minimal free
resolution of D(A). Namely, we can show the following, which answers Problems 1.2
and 1.4 partially:

Theorem 1.6. Let A′ be free with exp(A′) = (1, d2, . . . , dℓ)⩽. Here for the set of
integers (a1, . . . , as), the notation (a1, . . . , as)⩽ means that a1 ⩽ . . . ⩽ as. Let dj <
d := di + dj + |AH | − |A′| ⩽ dj+1 for some i < j. Then the following two conditions
are equivalent:

(1) AH is free with exp(AH) = (1, d2, . . . , d̂i, . . . , d̂j , . . . , dℓ) ∪ (d)
(2) A is SPOG with POexp(A) = (1, d2, . . . , di +1, . . . , dj +1, . . . , dℓ) and level d.

Theorem 1.6 can be regarded as an extension of the addition and restriction the-
orems (Theorem 1.1). Namely, Theorem 1.6 determines a minimal free resolution of
D(A) as an SPOG-module when | exp(A′)∩exp(AH)| = ℓ−2. The condition d ⩽ dj+1
is necessary, see Example 4.8 for details.

Now go back to Terao’s conjecture. As we have seen, SPOG arrangements can be
regarded as a close analogue of free arrangements. Thus to study Terao’s conjecture
by using an inductive approach, it is important to study combinatorial dependency
of SPOG arrangements. For that purpose, let us introduce the following class of
arrangements.

Definition 1.7. We say that A is stair-SPOG if there is H ∈ A such that both
A′ := A ∖ {H} and AH are stair-free (see Definition 2.6 and Theorem 2.7), and
exp(A′), exp(AH) and |A′| − |AH | satisfy the conditions in Theorem 1.6. Let Sℓ

denote the set of stair-SPOG arrangements in an ℓ-dimensional vector space and let
S :=

⋃
ℓ⩾2

Sℓ.

Theorem 1.8. A is SPOG if A ∈ S. Moreover, if there are A,B such that A ∈ S and
L(A) ≃ L(B), then B is SPOG too.

The organization of this article is as follows. In §2 we introduce several results
and definitions for the proof of the main results in this article. In §3 we prove some
useful results on the cardinality of the set of minimal generators. In §4 we prove the
main results of this article. Several examples are also exhibited in §4. §5 is devoted
to investigate the relation between Ziegler restriction of an arrangement and their
SPOGness by using the methods introduced in the previous sections.

2. Preliminaries
In this section let us introduce several definitions and results for the proof of the
main results in this article. First recall some combinatorics of arrangements. For the
intersection lattice L(A), we can define the Möbius function µ : L(A) → Z by
µ(V ) = 1 and by

µ(X) := −
∑

X⊊Y ⊂V, Y ∈L(A)

µ(Y )

for X ∈ L(A) ∖ {V }. The generating function of µ is called the characteristic
polynomial of A defined by

χ(A; t) :=
∑

X∈L(A)

µ(X)tdim X ,
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which is a combinatorial invariant. The absolute value of the coefficient of tℓ−i in
χ(A; t) is called the i-th Betti number of A and denoted by bi(A). Next let us
recall several useful results on D(A).

Theorem 2.1 (Terao’s polynomial B, [11]). Let C ∖ {H} = C′. Then there is a ho-
mogeneous polynomial B ∈ S of degree |C| − 1 − |CH | such that

D(C′)(αH) := {θ(αH) | θ ∈ D(C′)} ⊂ (αH , B).
We call such B a polynomial B of (C, H).

Theorem 2.2 (Terao’s factorization theorem, [12]). Assume that A is free with
exp(A) = (d1, d2, . . . , dℓ), then

χ(A; t) =
ℓ∏

i=1
(t− di).

For H ∈ C and C′ := C ∖ {H} we have the following Euler exact sequence

(2.1) 0 → D(C′) ·αH→ D(C) ρ→ D(CH).
Here for θ ∈ D(A) and the image f ∈ S/αHS of a polynomial f ∈ S by the

canonical surjection S → S/αHS, ρ(θ) is defined by

ρ(θ)(f) := θ(f).
The Euler exact sequence is not right exact in general, but it is so when C′ is free as
follows.

Theorem 2.3 (Free surjection theorem (FST), Theorem 1.13, [3]). Let C = C′ ∪ {H}
and assume that C′ is free. Then ρ = ρH : D(C) → D(CH) is surjective.

Next let us introduce the results on freeness and SPOGness.

Theorem 2.4 (Theorem 1.4, [4]). Let A be free with exp(A) = (d1, . . . , dℓ), H ∈ A
and assume that A′ := A ∖ {H} is not free. Then A′ is SPOG with POexp(A′) =
(d1, . . . , dℓ) and level d := |A′| − |AH |.

Theorem 2.5 (Division theorem, Theorem 1.1, [1]). Assume that AH is free and
χ(AH ; t) | χ(A; t). Then A is free. Thus if we can show the freeness of A by using
the division theorem several times, then the freeness of A is combinatorial, and such
a free arrangement is called a divisionally free arrangement.

Definition 2.6 (Definition 4.2, [5]). We say that A is stair-free if the freeness of A
can be proved by using the addition and division theorems.

Theorem 2.7 (Theorem 4.3, [5]). If A is stair-free, then its freeness depends only
on L(A).

Finally let us recall the fundamentals of the multiarrangement theory introduced
by Ziegler in [16]. A pair (A,m) is a multiarrangement if A is an arrangement and
m : A → Z>0. Multiarrangements were defined by Ziegler in [16] and used in several
research of arrangements. We can define their logarithmic derivation module D(A,m)
as follows:

D(A,m) := {θ ∈ DerS | θ(αH) ∈ Sα
m(H)
H (∀H ∈ A)}.

Then their freeness and exponents can be defined in the same manner as for D(A). For
details, see [16]. We have a canonical way to construct a multiarrangement from A.
Let H ∈ A. Then the Ziegler multiplicity mH : AH → Z is defined by

mH(X) := |{L ∈ A ∖ {H} | H ∩ L = X}|.
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The pair (AH ,mH) is called the Ziegler restriction of A onto H. Also recall that
for H ∈ A, the submodule DH(A) of D(A) is defined by

DH(A) := {θ ∈ D(A) | θ(αH) = 0}.
Since D(A) = SθE ⊕DH(A) by the splitting exact sequence

0 → SθE → D(A) → DH(A) → 0

with the map D(A) ∋ θ 7→ θ − θ(αH )
αH

θE ∈ DH(A) and the canonical inclusion as a
section, we know that A is free if and only if DH(A) is free. Then DH(A) is closely
related to D(AH ,mH) as we can see in the following several results:

Theorem 2.8 ([16]). There is an exact sequence

(2.2) 0 → DH(A) ·αH→ DH(A) π→ D(AH ,mH).
Here π := ρ|DH (A). This is called the Ziegler exact sequence. Moreover, if A is free
with exponents (1, d2, . . . , dℓ), then (AH ,mH) is also free with exponents (d2, . . . , dℓ).

Theorem 2.9 (Theorem 5.1, [7]). Let π : DH(A) → D(AH ,mH) be the Ziegler re-
striction of A onto (AH ,mH). Then the preimages of a set of generators for Im(π)
by π generate DH(A).

Theorem 2.10 (Yoshinaga’s criterion, Theorem 2.2, [13]). A is free if and only if A
is locally free along H (i.e., AX is free for all 0 ̸= X ∈ L(AH)), and (AH ,mH) is
free.

For a multiarrangement we can introduce the concept of SPOG multiarrangements
as follows.

Definition 2.11 ([6]). We say that (A,m) is SPOG with POexp(A,m) =
(d1, d2, . . . , dℓ) and level d if there is a minimal free resolution of the following
form:

0 → S[−d− 1] (f1,...,fℓ,α)→ ⊕ℓ
i=1S[−di] ⊕ S[−d] → D(A,m) → 0

with 0 ̸= α ∈ V ∗.

3. Cardinality of minimal sets of generators
In this section we show some new results on the cardinality of a minimal set of
generators for D(A), which will play a key role to prove our main theorem.

Definition 3.1. For an arrangement A, let g(A) denote the cardinality of a minimal
set of generators for D(A). Clearly it is independent of the choice of the set of minimal
generators.

Moreover for A = A′ ∪ {H} we define an integer for a free arrangement A′ that
measures how far D(A′) is from being tangent to H.

Definition 3.2. Let A = A′ ∪ {H} and assume that A′ is free. Let FB(A′) be the set
of all homogeneous basis for D(A′) and for each B := {θ1, . . . , θℓ} ∈ FB(A′) define

NT (B) := |{i | 1 ⩽ i ⩽ ℓ, θi ̸∈ D(A)}|,
and define

SNT (A′) := min{NT (B) | B ∈ FB(A′)}.

First we record the following easy facts.
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Lemma 3.3. Assume that A′ and AH are both free. Then g(A) ⩽ 2ℓ− 2.

Proof. By Theorem 2.3, we can choose θE , θ2, . . . , θℓ−1 ∈ D(A) as preimages of the
basis for D(AH) by ρ. Let θE , φ2, . . . , φℓ be a basis for D(A′). Then the Euler exact
sequence (2.1) shows that

θE , θ2, . . . , θℓ−1, αHφ2, . . . , αHφℓ

generate D(A), hence g(A) ⩽ ℓ− 1 + ℓ− 1 = 2ℓ− 2. □

On g(A) the following proposition is fundamental.

Proposition 3.4. Let A′ be free with SNT (A′) = s. Let θE , θ2, . . . , θℓ form a basis
for D(A′) such that θi ̸∈ D(A) (2 ⩽ i ⩽ s + 1) and θi ∈ D(A) (i ⩾ s + 2). Then
g(A) ⩾ ℓ+ s− 1.

Proof. Let αH = x1. By the assumption on θE , θ2, . . . , θℓ, it is clear that we can
choose derivations φj ∈ D(A) (j = 1, . . . , k) of the form

∑s+1
i=2 f

j
i θi such that f j

i ∈
S′ := K[x2, . . . , xℓ] are of positive degrees, and

θE , αHθ2, . . . , αHθs+1, θs+2, . . . , θℓ

together with the derivations φj (j = 1, . . . , k) form a minimal set of generators
for D(A). Since their images by ρ generate the rank (ℓ − 1)-module D(AH) due to
Theorem 2.3, we can compute

|{θE , θs+2, . . . , θℓ, φ1, . . . , φk}| = k + 1 + ℓ− s− 1 = ℓ+ k − s ⩾ ℓ− 1.
So g(A) = ℓ+ k ⩾ ℓ+ s− 1. □

Next let us show a key result to prove Theorem 1.6.

Proposition 3.5. Let 1 ⩽ i < j ⩽ ℓ, and let A′ be free with SNT (A′) = 2.
Let θE , θ2, . . . , θℓ be a basis for D(A′) such that θk ∈ D(A) (k ̸= i, j). Let θi(αH) =
fiαH + giB, θj(αH) = fjαH + gjB by Theorem 2.1. Then (gi, gj) = 1 and D(A) is
generated by {θk}k ̸=i,j ∪ {αHθi, αHθj , gjθi − giθj}. In particular, A is SPOG.

Proof. The proof is essentially the same as that of [4, Theorem 1.9] (see [10, Propo-
sition 3.6] too). For the completeness, let us give a sketch of the proof. We may
assume that αH = x1 and let (gi, gj) = g ∈ S. Let gi = ghi, gj = ghj with
(hi, hj) = 1. Then clearly x1θi, x1θj , φ := hjθi − hiθj ∈ D(A). By definition, we
can choose gi, gj ∈ K[x2, . . . , xℓ] =: S′ so we may assume that hi, hj , g ∈ S′. First
let us prove that {θk}k ̸=i,j ∪ {x1θi, x1θj , φ} generate D(A). Let θ ∈ D(A). Since
D(A) ⊂ D(A′), there are ak ∈ S such that

θ =
ℓ∑

k=1
akθk.

Since {θk}k ̸=i,j ⊂ D(A), it suffices to show that θ −
∑

k ̸=i,j akθk = aiθi + ajθj is
expressed as a linear combination of x1θi, x1θj , φ. Let us replace θ −

∑
k ̸=i,j ak by θ.

Then we can express
θ = bi(x1θi) + bj(x1θj) + ciθi + cjθj

for some bi, bj ∈ S, ci, cj ∈ S′. Thus
θ(x1) = bix1θi(x1) + bjx1θj(x1) + ciθi(x1) + cjθj(x1).

Taking the modulo x1 = αH combined with Theorem 2.1 (see the proof of [4, Theo-
rem 1.9] for details), we know that

ciθi + cjθj = c(hjθi − hiθj) + c′x1
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for some c, c′ ∈ S. As a conclusion, it holds that θ ∈ Sθi + Sθj + Sφ, and

D(A′) = ⟨{θk}k ̸=i,j ∪ {x1θi, x1θj , φ}⟩S .

By comparing the second Betti number of A calculated combinatorially and algebro-
geometrically (see the proof of [4, Theorem 1.9] for details), we can see that h is a
unit. Thus in fact

D(A′) = ⟨{θk}k ̸=i,j ∪ {x1θi, x1θj , gjθi − giθj}⟩S .

A minimal free resolution of D(A) is easily obtained by the form of this minimal set
of generators, which completes the proof. □

An immediate corollary of Proposition 3.4 is as follows:

Corollary 3.6. Let A′ be free and assume that g(A) = ℓ+ 1. Then A is SPOG.

Proof. By Proposition 3.4, g(A) = ℓ + 1 only when s ⩽ 2. s = 0 cannot occur, and
s = 1 implies that A is free by the addition theorem, thus g(A) = ℓ. So the rest case
is when s = 2. In this case, Proposition 3.5 shows that A is SPOG. □

Since the freeness of AH and A′ implies that pd A ⩽ 1 by Theorem 1.3, it is natural
to study which condition on g(A) makes the arrangement AH free.

Theorem 3.7. Let ℓ ⩾ 3 and A′ be free. Then AH is free if g(A) ⩽ ℓ+ 2.

Proof. By the addition and restriction theorems, Theorem 2.3, Corollary 3.6 and
the explicit form of the set of SPOG generators as in Proposition 3.5, the statement
follows if g(A) ⩽ ℓ+ 1. Assume that g(A) = ℓ+ 2. Then by Proposition 3.4, we have
a basis θE , θ2, . . . , θℓ for D(A′) such that θi ̸∈ D(A) for i ⩾ ℓ − 2 and θi ∈ D(A)
for i ⩽ ℓ− 3. We may assume that αH = x1. Then clearly D(A) has a minimal set of
generators with cardinality ℓ+ 2 of the form

θE , θ2, . . . , θℓ−3, x1θℓ−2, x1θℓ−1, x1θℓ, φ1, φ2,

by the same argument as in the proof of Proposition 3.4 or 3.5, where φj is a lin-
ear combination of θℓ−2, θℓ−1, θℓ over K[x2, . . . , xℓ]. By Theorem 2.3, the images of
θE , θ2, . . . , θℓ−3, φ1, φ2 by ρ have to generate D(AH). Since rankS/αH SD(AH) = ℓ−1,
it holds that AH is free. □

By using results above, we can show the following proposition which is fundamental
on the relation between free and SPOG arrangements.

Proposition 3.8. Let A be SPOG, H ∈ A and A′ := A ∖ {H}. If A′ is free, then
there are a set of SPOG generators θ1 = θE , θ2, . . . , θℓ, a level element φ and two
distinct integers 1 < s < t ⩽ ℓ such that

θE , θ2, . . . , θs−1, θs/αH , θs+1, . . . , θt−1, θt/αH , θt+1, . . . , θℓ

form a free basis for D(A′).

Proof. By Proposition 3.4 and the assumption that g(A) = ℓ + 1, for the ba-
sis θE , φ2, . . . , φℓ for D(A′), we may assume that φi ∈ D(A) (i ⩽ ℓ − 2) and
φℓ−1, φℓ ̸∈ D(A). Then

θE , φ2, . . . , φℓ−2, αHφℓ−1, αHφℓ, fℓφℓ−1 − fℓ−1φℓ

form a minimal set of generators for D(A), where φi(αH) = fiB modulo αH for
i = ℓ − 1, ℓ and B is Terao’s polynomial, which give the required set of generators
for D(A). □

Algebraic Combinatorics, Vol. 7 #2 (2024) 419



T. Abe

4. Proof of the main results
In this section let us prove Theorems 1.6 and 1.8. For that, let us introduce the
following two results.

Lemma 4.1. Let N ⊂ M be S-graded free modules. Let θ1, . . . , θn be a homogeneous
basis for N with deg θ1 ⩽ · · · ⩽ deg θn and φ1, . . . , φn+t be a homogeneous basis for M
with degφ1 ⩽ · · · ⩽ degφn+t. If deg θi = degφi for 1 ⩽ i ⩽ n, then we may choose
θ1, . . . , θn, φn+1, . . . , φn+t as a basis for M .

Proof. This is essentially the same as Theorem 4.42 in [9], but we give a proof for
the completeness. Let di := deg θi = degφi. We prove by induction on 1 ⩽ i ⩽ n.
Let θ1 ∈ N ⊂ M . Let φ1, . . . , φs be of degree d1 and ds+1 > d1. Then

θ1 =
s∑

i=1
ciφi

for constants c1, . . . , cs ∈ K. We may assume that c1 ̸= 0. Then we can choose
θ1, φ2, . . . , φn+t as a basis for M .

Now assume that θi = φi for 1 ⩽ i ⩽ k − 1. Let us prove that we may choose
θk = φk. Again by θk ∈ N ⊂ M , we can express

θk =
k−1∑
i=1

fiθi + ckφk + · · · + csφs,

where dk = · · · = ds < ds+1 or s = n + t. If ci = 0 for all i, then θ1, . . . , θk

are not independent over S. So we may assume that ck = 1, and we can choose
θ1, . . . , θk, φk+1, . . . , φn+t as a basis for M . □

Lemma 4.2. Let H ∈ A, A′ := A ∖ {H} and assume that A′ and AH are both free.
Let φ1 = θE , φ2, . . . , φℓ form a homogeneous basis for D(A′) with degφi =: di ⩽
di+1 = degφi+1 for all i. Assume that there are an integer 1 ⩽ k ⩽ ℓ, finite subsets
I ⊂ {1, . . . , k − 1} =: [k − 1], T , and derivations

G := {φi}i∈I ∪ {ϕj := αHφj}j∈[k−1]∖I ∪ {ψt}t∈T ∪ {ηu}ℓ
u=k

in D(A) which satisfy the following conditions:
(1) ψt is a linear combination of {φj}j∈[k−1]∖I over S for all t ∈ T , and deg ηu =

degφu = du for all k ⩽ u ⩽ ℓ,
(2)

deg ηu ⩾ max{degφi,deg ϕj ,degψt | i ∈ I, j ∈ [k − 1] ∖ I, t ∈ T}

for all k ⩽ u ⩽ ℓ,
(3)

(
⊕

j∈[k−1]∖I

Sφj) ∩D(A) =
∑

j∈[k−1]∖I

Sϕj +
∑
t∈T

Sψt,

and
(4) the image of G ∖ {ϕj}j∈[k−1]∖I by the Euler restriction map ρ form a basis

for D(AH).
Then the S-module generated by

G′ := {φi}i∈I ∪ {ϕj}j∈[k−1]∖I ∪ {ψt}t∈T ∪ {φu}ℓ
u=k

coincides with the S-module generated by G.
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Proof. Let J := [k − 1] ∖ I. We prove by induction on k ⩽ u ⩽ ℓ. Assume that
ηa = θa for k ⩽ a ⩽ u − 1, and let us show that we can choose ηu = φu. Since
ηu ∈ D(A) ⊂ D(A′), we can express

ηu =
ℓ∑

a=1
gaφa

for some ga ∈ S. Since we are interested in sets of generators, we may replace ηu −∑
i∈I giφi by ηu to get an expression

ηu =
∑
j∈J

gjφj +
u−1∑
a=k

gaηa +
ℓ∑

a=u

gaφa.

Let du = · · · = db < db+1 or b = ℓ. Then replacing ηu −
∑u−1

a=k gaηa by ηu, we obtain

ηu =
∑
j∈J

gjφj +
b∑

a=u

gaφa.

Assume that
∑b

a=u gaφa ̸= 0, say gu = 1 by the reason of degrees in the conditions (1)
and (2). Then replacing

∑
j∈J gjφj +

∑b
a=u gaφa by φu, we can choose ηu as φu. So

assume that all ga = 0 for u ⩽ a ⩽ b. Then

ηu =
∑
j∈J

gjφj .

Since ηu ∈ D(A), the condition (3) shows that

ηu =
∑
j∈J

hjϕj +
∑
t∈T

htψt

for some hj , ht ∈ S. Sending it by ρ, the Euler exact sequence shows that

ρ(ηu) −
∑
t∈T

htρ(ψt) = 0,

contradicting the independency of the basis for D(AH) in the condition (4), which
completes the proof. □

Proof of Theorem 1.6. First we prove (2) ⇒ (1). It is easy to see that, for the
basis θE , φ2, . . . , φℓ for D(A′) with degφk = dk, the set of SPOG generators for
D(A) is of the form {θk}k ̸=i,j ∪ {αHθk}k=i,j ∪ {fjθi − fiθj} by Proposition 3.8. Thus
Theorem 2.3 shows that D(AH) is generated by the image of {θk}k ̸=i,j ∪{fjθi −fiθj}.
Since rankSD(AH) = ℓ− 1, it follows that AH is free with the given exponents.

Next we prove (1) ⇒ (2). Assume that AH is free with the given exponents above.
In this assumption, Terao’s addition theorem shows that A is not free since exp(AH) ̸⊂
exp(A′). By Theorem 2.3, the Euler restriction map ρH : D(A) → D(AH) is surjec-
tive. Thus there are S-independent derivations θE , θ2, . . . , θ̂i, . . . , θ̂j , . . . , θℓ, θ ∈ D(A)
such that deg θk = dk, deg θ = d, and their images by ρH form a basis for D(AH).
Let θE = φ1, φ2, . . . , φℓ be a basis for D(A′) with degφk = dk. We may assume
that di < di+1 and dj < dj+1 or j = ℓ. Since D(A) ⊂ D(A′), it holds that

i−1⊕
k=1

Sθk ⊂
i−1⊕
k=1

Sφk.

So by Lemma 4.1, we can choose φk = θk for k < i.
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Next let us show that φi ̸∈ D(A). Assume that φi ∈ D(A). Recall that di < di+1.
So ρ(φi) ∈ D(AH)di

is a linear combination of ρ(θ1), . . . , ρ(θi−1). Hence

φi −
i−1∑
s=1

fsθs ∈ αHD(A′)

for some fs ∈ S. Thus replacing φi −
∑i−1

s=1 fsθs by φi, it holds that φi/αH ∈ D(A′),
contradicting the minimality of the basis θE , φ2, . . . , φℓ for D(A′). So φi ̸∈ D(A).
Hence D(A) ∩ (Sφi) = SαHφi. Now apply Lemma 4.2 to obtain that θs = φs for
1 ⩽ s ⩽ i − 1, i + 1 ⩽ s ⩽ j − 1. Moreover, the same proof as that of φi ̸∈ D(A)
shows that φj ̸∈ D(A).

Now express θ in the following form by using the fact that d = deg θ ⩽ dj+1:

(4.1) θ =
j−1∑

i̸=k=1
fkθk +

p∑
k=j+1

akφk + fiφi + fjφj .

Here dj+1 = · · · = dp = d < dp+1 and ak ∈ K. First assume that ak = 0 for all k.
Then replacing θ −

∑j−1
i ̸=k=1 fkθk by θ, we have

(4.2) θ = fiφi + fjφj .

By the independency of images of θk and θ by ρ, at least one of fi, fj is not zero.
Assume that only one of them is not zero, say fi ̸= 0 and fj = 0. Then (4.2) combined
with the fact that φi ̸∈ D(A) shows that αH | fi. So ρH(θ) = 0, a contradiction.
Thus both fi and fj are not zero. Recall that φi, φj ̸∈ D(A). Thus the same proof
as Proposition 3.5 shows that, letting φi(αH) = giB, φj(αH) = gjB modulo αH ,
(gi, gj) = h, gi = hhi, gj = hhj and (hi, hj) = 1, it holds that φ := hjφi − hiφj ∈
D(A). Note that gi, gj , hi, hj , h ∈ S′ := K[x2, . . . , xℓ]. By the construction, degφ ⩽
d = deg θ = di + dj − |A′| + |AH | = di + dj − degB. Assume that degφ < d. Send φ
by ρ, then we have

φ = hjφi − hiφj =
j−1∑

i ̸=s=1
bsφs + αH(biφi + bjφj)

for some bs ∈ S. Thus αH | hi and αH | bj , contradicting hi, hj ∈ S′. Thus we may
assume that h = 1 and deg(giφj − gjφi) = d = deg θ. Hence the equation (4.2) shows
that

θ = giφj − gjφi

modulo αH .
Second assume that ak ̸= 0 for some k in the equation (4.1). Then we may assume

that aj+1 = 1 and the equation (4.2) in this case is as follows:

(4.3) θ = fiφi + fjφj + φj+1 +
p∑

k=j+2
akφk.

Replacing fiφi +fjφj +φj+1 +
∑p

k=j+2 akφk by φj+1, we may assume that θ = φj+1.
Continue this for θj+1, . . . , θp, then we obtain either θk = φk+1, or θk = giφj − gjφi

modulo αH for j + 1 ⩽ k ⩽ p. So exchanging an appropriate θk by θ, we obtain that
θ = gjθi − giθj modulo αH . Hence in both cases,

D(A) ∩ (Sφi ⊕ Sφj) = SαHφi + SαHφj + Sθ.

Thus applying Lemma 4.2, we obtain that φs = θs for all 1 ⩽ s ⩽ ℓ with s ̸= i, j and
φi, φj ̸∈ D(A). Therefore, Proposition 3.5 shows that A is SPOG with POexp(A) =
(1, d2, . . . , di + 1, . . . , dj + 1, . . . , dℓ) and level d = di + dj − |A′| + |AH |. □
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The following case is the most practical to apply Theorem 1.6.

Corollary 4.3. Let A′ be free with exp(A′) = (1, d2, . . . , dℓ)⩽ and d := di + dℓ +
|AH | − |A′| > dℓ for some i. Then the following two conditions are equivalent:

(1) AH is free with exp(AH) = (1, d2, . . . , d̂i, . . . , dℓ−1) ∪ (d)
(2) A is SPOG with POexp(A) = (1, d2, . . . , di−1, di + 1, di+1, . . . , dℓ−1, dℓ + 1)

and level d.

Proof. Clear by the proof of Theorem 1.6. □

Let us apply Theorem 1.6 to some examples.

Example 4.4. Let A be the Weyl arrangement of the type A4 defined by

Q(A) =
4∏

i=1
xi

∏
1⩽i<j⩽4

(xi − xj) = 0.

A is well-known to be free with exp(A) = (1, 2, 3, 4). Let A ̸∋ H : x1−x2+2x3−2x4 =
0 and let B := A ∪ {H}. Then |BH | = 9 < 10 = |A|. It is easy to show that BH is free
with exp(BH) = (1, 4, 4). Note that

d := 2 + 3 − |A| + |BH | = 5 − 1 = 4.

In this setup, from exp(A) = (1, 2, 3, 4), the integers 2 and 3 are removed and d = 4
coincides with the remaining integer 4. Hence we can apply Theorem 1.6 to obtain
that B is SPOG with POexp(B) = (1, 3, 4, 4) and level 4.

Note that Q(BH) is

x2x3x4(x2 − x3)(x2 − x4)(x3 − x4)(x2 − 2x3 + 2x4)(x2 − 3x3 + 2x4)(x2 − 2x3 + x4).

Let L : x2 = 0 and let C := BH∩L. Then it is easy to show that χ(C; t) = (t− 1)(t− 4)
and χ(BH ; t) = (t − 1)(t − 4)2. Thus BH is divisionally free as in Theorem 2.5.
Since A is divisionally free too, by Theorem 2.2, the freeness and exponents of A
and BH are both combinatorial. Thus Theorem 1.6 shows that the SPOGness of B is
combinatorially determined.

Proof of Theorem 1.8. Clear by Theorems 1.6 and 2.7. □

We can use Theorem 1.6 to show the combinatorial freeness of arrangements by
using a non-free but SPOG arrangements. Let us check it by the following example:

Example 4.5. Let A be the Weyl arrangement of the type B4 defined by

Q(A) =
4∏

i=1
xi

∏
1⩽i<j⩽4

(x2
i − x2

j ) = 0.

Let A′ := A ∖ {H}, where H : x1 = 0. Let L : x1 + x2 + x3 = 0. We know that A′

is divisionally free with exp(A′) = (1, 3, 5, 6), and (A′ ∪ {L})L is also divisionally free
with exp(A′ ∪ {L})L) = (1, 5, 7). Thus Theorem 1.6 confirms that B := A′ ∪ {L}
is SPOG with POexp(B) = (1, 4, 5, 7) and level 7. Next let C := B ∪ {H}. Then
|CH | = 9, so |B| − |CH | = 16 − 9 = 7. Thus the set of generators of degrees 1, 4, 5
for D(B) are in D(C) too, and we may assume that one of two generators of degree 7
is in D(C) by Theorem 2.1. Since the relations in D(B) are among three derivations
of degrees 4, 7, 7 by the explicit construction of the set of SPOG generators and a
level element in Proposition 3.5, we know that these 4-basis elements in D(C) are S-
independent. So C is combinatorially free with exp(C) = (1, 4, 5, 7) since the SPOGness
of B and |C| are both combinatorial.
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Unfortunately, there are cases in which A′ and AH are free, A is SPOG but The-
orem 1.6 cannot be applied.

Example 4.6. Let A be the Weyl arrangement of the type A4 and letH : x1+x2+x3 =
0. Say that B := A ∪ {H}. Then BH is free with exp(BH) = (1, 4, 5) ̸⊂ (1, 2, 3, 4) =
exp(A). We can check that B is SPOG with POexp(B) = (1, 3, 4, 4) and level 5 by
using Macaulay2 in [8], but we cannot apply Theorem 1.6.

Problem 4.7. Generalize Theorem 1.6 to all cases when A′ and AH are free, ℓ− 2 ⩽
| exp(A′) ∩ exp(AH)| ⩽ ℓ− 1 and A is not free.

In fact, to apply Theorem 1.6 the condition d ⩽ dj+1 is necessary. Let us see the
following example.

Example 4.8. Let A′ be an arrangement in R4 defined by

Q(A′) = (x1 + x2 + x3 + x4)
4∏

i=1
xi

4∏
i=2

(x1 + xi)
4∏

i=2
(x1 + x2 + x3 + x4 − xi).

Then A′ is free with exp(A′) = (1, 3, 3, 4). Let H = x2+x3+x4 and let A := A′∪{H}.
Then AH is free with exp(AH) = (1, 4, 5). So exp(A′) ∩ exp(AH) = {1, 4}. However,
Macaulay2 in [8] shows that D0(A) := D(A)/SθE is not SPOG but has a following
minimal free resolution:

0 → S[−5] ⊕ S[−6] → S[−4]3 ⊕ S[−5]2 → D0(A) → 0.

Since d = 5 = 3 + 3 − |A′| + |AH | > 4, the condition d ⩽ dj+1 in Theorem 1.6 is
necessary.

If we remove the assumption on exp(A′) and exp(AH) in Theorem 1.6, we have an
example related to Problem 4.7.

Example 4.9. Let

Q(A′) =
4∏

i=1
xi

3∏
i=1

(x2
i − x2

4)(x2
i − 4x2

4)
3∏

i=2
(x2

i − 9x2
4)(x2

3 − 16x2
4).

Then A′ is free with exp(A′) = (1, 5, 7, 9). Let H1 : x2 + x3 + 7x4 = 0, H2 : x1 + x2 +
x3 = 0, and let Ai := A′ ∪ {Hi}. Then A1 is SPOG with POexp(A1) = (1, 5, 8, 10)
and level 15. So Theorem 1.6 shows that AH1

1 is free with exponents (1, 5, 15) and
vice versa. On the other hand, AH2

2 is free with exponents (1, 10, 11), and D(A2) has
a minimal free resolution

0 → S[−11] ⊕ S[−12] → S[−6] ⊕ S[−8] ⊕ S[−10]2 ⊕ S[−11] → D0(A2) → 0.

So in general, it can happen that A is of projective dimension one, is not SPOG, but
A′ and AH are both free. Note that the freeness of AH follows from g(A) ⩽ 6 and
the freeness of A′ by Theorem 3.7.

5. Ziegler restrictions and SPOG arrangements
Let us study a method to check whether A is SPOG or not by using Ziegler restrictions,
i.e., a theory of multiarrangements. First recall the following two results which we will
use later.

Theorem 5.1 (Theorem 2.3, [13]). Let E be a reflexive sheaf on Pn (n ⩾ 3) and as-
sume that E is locally free except for a finite number of points in Pn. Then H1(E(e)) =
0 for all e << 0.

Algebraic Combinatorics, Vol. 7 #2 (2024) 424



Generalization of the addition and restriction theorems

Proposition 5.2 (Proposition 2.5, [6] and the equation (1.5), [14]). Let A be an
arrangement in V and m be a multiplicity on A. Then

⊕e∈ZH
0( ˜D(A,m)(e)) = D(A,m),

where ˜D(A,m) is a sheaf on Proj(V ) obtained as the coherent sheaf associated to the
module of D(A,m).

Next, we prove the characterization of SPOG arrangements in terms of that of the
Ziegler restrictions as follows:

Proposition 5.3. Assume that π : DH(A) → D(AH ,mH) is surjective, A is not
free and D(AH ,mH) is SPOG with POexp(AH ,mH) = (d2, . . . , dℓ−1, dℓ) and level d.
Then A is SPOG with POexp(A) = (1, d2, . . . , dℓ) and level d.

Proof. Since π is surjective, there are θ2, . . . , θℓ, θ ∈ DH(A) such that π(θ2), . . . , π(θℓ)
form a set of SPOG generators for D(AH ,mH) with a level element π(θ). For φ ∈
DH(A) let φ denote its image by the Ziegler restriction map π. Since π is surjective,
Theorem 2.9 shows that θ2, . . . , θℓ, θ together with θE generate D(A). Let

αθ =
ℓ∑

i=2
f iθi

be the unique relation in the SPOG module D(AH ,mH), where αH ̸= α ∈ V ∗ and
fi ∈ S. Then its preimages are of the form

αθ −
ℓ∑

i=2
fiθi ∈ αHDH(A)

by the Ziegler exact sequence (2.2). Since DH(A) = ⟨θ2, . . . , θℓ, θ⟩S which is a minimal
set of generators because of the non-freeness of DH(A) and rankSDH(A) = ℓ− 1, it
holds that

αθ −
ℓ∑

i=2
fiθi = αH(

ℓ∑
i=2

giθi + cθ)

for some gi ∈ S and c ∈ K. Since α ̸= 0, we have a relation

(5.1) (α− cαH)θ −
ℓ∑

i=2
(fi + αHgi)θi = 0

in D(A).
On the other hand, assume that there is a relation

h1θE +
ℓ∑

i=2
hiθi + hθ = 0

in D(A). Since we have a decomposition D(A) = SθE ⊕DH(A), we may assume that
h1 = 0. Since we have to determine the second syzygy, take a free module

M := Se+ ⊕ℓ
i=2Sei

such that by the map G : M → DH(A) defined by

G(ei) = θi (i = 2, . . . , ℓ), G(e) = θ,

M becomes the first syzygy of DH(A). Since θ2, . . . , θℓ, θ form a minimal set of
generators for DH(A) and their images by π form a minimal set of generators for
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D(AH ,mH), by the nine-lemma, we have an exact commutative diagram as follows:

0

��

0

��

0

��
0 // K //

·αH

��

M
G //

·αH

��

DH(A) //

·αH

��

0

0 // K //

��

M
G //

π

��

DH(A) //

π

��

0

0 // S[−d− 1] //

��

M
G//

��

D(AH ,mH) //

��

0

0 0 0
So what we are assuming is that

(5.2)
ℓ∑

i=2
hiei + he ∈ ker(G) = K.

Sending this by π, the commutativity shows that
ℓ∑

i=2
hiei + he ∈ kerG.

Since D(AH ,mH) is SPOG, kerG is generate by the unique relation

αe−
ℓ∑

i=2
fiei

of degree d+ 1. Thus the exactness of the middle column in the diagram shows that

(5.3)
ℓ∑

i=2
hiei + he = F (αe−

ℓ∑
i=2

fiei) + αHφ

for some F ∈ S and φ ∈ M . Rewrite (5.3) into the following way:
ℓ∑

i=2
hiei + he− F{(α− cαH)e−

ℓ∑
i=2

(fi + αHgi)ei} = αH(Fce+ F

ℓ∑
i=2

giei + φ).

By (5.1), the left hand side of the above is in ker(G). So is the right hand side. Since
αH ̸= 0 in S and DH(A) is torsion free, we know that

Fce+ F

ℓ∑
i=2

giei + φ ∈ ker(G).

So we have a new relation among θ2, . . . , θℓ, θ but the degrees of this relation is lower
than the original relation (5.2). Since the lowest degree relation in D(AH ,mH) is
at degree d + 1 by the assumption, the lowest degree relation among θ2, . . . , θℓ, θ in
DH(A) is (5.1), which is of degree d + 1. Hence applying the same argument to this
new relation continuously, we can show that all the relations among θ2, . . . , θℓ, θ are
generated by the unique relation (5.1), i.e., K ≃ S[−d − 1]. Therefore, A is SPOG
with the desired exponents and level. □
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To introduce the main result in this section let us recall some definitions and facts
on the freeness.
Definition 5.4 (Proposition 3.6, [1]). For H ∈ A, the b2-inequality for (A, H) is
the inequality

b2(A) ⩾ b2(AH) + |AH |(|A| − |AH |).
Moreover, we say that the b2-equality holds for (A, H) if

b2(A) = b2(AH) + |AH |(|A| − |AH |).

Theorem 5.5 (Theorem 3.6, [2]). (1) The b2-inequality holds for all A and H ∈
A.

(2) A is free if the b2-equality holds for (A, H) and AH is free.
Theorem 5.6 (Theorem 3.1, [2]). Let H ∈ A and assume that the b2-equality holds
for (A, H). If θE , θ2, . . . , θℓ form a minimal set of generators for D(AH), then we
may assume that θ2, . . . , θℓ ∈ D(AH ,mH) and

Q(AH ,mH)
Q(AH) θE , θ2, . . . , θℓ

form a set of generators for D(AH ,mH). Moreover, they form a minimal set of gen-
erators unless (AH ,mH) is free.

Now we have the following result for SPOGness.
Theorem 5.7. Let ℓ ⩾ 5. Let A ∋ H and assume that A is not free, AH is SPOG,
the b2-equality holds for (A, H) and A is locally free along H, i.e., AX is free for all
X ∈ L(AH) ∖ {0}. Then A is SPOG with POexp(A) = POexp(AH) ∪ (|A| − |AH |)
and the same level as AH .
Proof. By Proposition 5.3, it suffices to show that π is surjective and (AH ,mH)
is SPOG. First, let us show that pdS D(AH ,mH) ⩽ 1. Since the b2-equality
holds, Theorem 5.6 shows that, for a set of SPOG generator and the level
element θE , θ2, . . . , θℓ−1, θ for D(AH) with θ2, . . . , θℓ−1, θ ∈ D(AH ,mH), we
know that Q′θE , θ2, . . . , θℓ−1, θ form a set of generators for D(AH ,mH). Here
Q′ := Q(AH ,mH)/Q(AH). If (AH ,mH) is free, then clearly pdS D(AH ,mH) = 0.
So assume that (AH ,mH) is not free. Since rankSD(AH ,mH) = ℓ − 1, it holds that
Q′θE , θ2, . . . , θℓ−1, θ form a minimal set of generators by Theorem 5.6. Since AH is
SPOG, letting θℓ := θ as a level element, there are a non-zero α ∈ V ∗ and fi ∈ S
such that

(5.4) f1θE +
ℓ−1∑
i=2

fiθi + αθℓ = 0

which is the unique relation in D(AH). Again by Theorem 5.6, θi are in D(AH ,mH).
Thus Q′ | f1. Hence (5.4) is also a relation among a minimal set of generators in
D(AH ,mH) obtained above. Since every relation among this minimal set of generators
for D(AH ,mH) is also a relation in D(AH), the fact that AH is SPOG shows that
D(AH ,mH) also has the unique relation (5.4). Hence in this case (AH ,mH) is SPOG.
So in each case, pdS D(AH ,mH) ⩽ 1. In particular, since H ≃ Pℓ−2 and ℓ− 2 ⩾ 3, it
holds that H1( ˜D(AH ,mH)(e)) = 0 for all e ∈ Z.

Second, let us prove the surjectivity of π. Since π is locally free along H, Theo-
rem 2.3 shows that π is locally surjective. So we have the sheaf exact sequence

0 → D̃H(A) ·αH→ D̃H(A) π→ ˜D(AH ,mH) → 0.
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Since H1( ˜D(AH ,mH)(e)) = 0 for all e ∈ Z as above, the map

H1(D̃H(A)(e− 1)) ·αH→ H1(D̃H(A)(e))

is surjective. Note that there are at most finite number of non-local free points of
D̃H(A). Assume not, then there is X ∈ L(A) such that AX is not free and dimX ⩾ 2.
Then it has the intersection with H of dimension at least one, contradicting the local
freeness of A along H. Thus Theorem 5.1 shows that H1(D̃H(A)(e)) = 0 for all e ∈ Z.
By using Proposition 5.2, it holds that π is surjective.

Finally let us show that D(AH ,mH) is SPOG. By Yoshinaga’s criterion (Theo-
rem 2.10) and the surjectivity of π, it holds that (AH ,mH) is not free. Thus the first
investigation of the generators for D(AH ,mH) shows that (AH ,mH) is SPOG. □

Example 5.8. Let

A1 :=
5∏

i=1
xi

∏
1⩽i<j⩽5

(xi − xj) = 0.

Then define
A := A1 ∖ {x1 = 0, x5 = 0, x2 = x3, x1 = x2}.

Let {x1 = x5} = H ∈ A. Then by choosing appropriate coordinates x, y, z for H∗,
AH is isomorphic to

xyz(x− w)(y − w)(z − w)(x− z)(y − z) = 0.

Let {y = w} = X ∈ AH . Then AH ∖{X} =: B is easily checked to be divisionally free
by Theorem 2.5, with exponents (1, 2, 2, 2) and AX is free with exponents (1, 2, 3),
which is also divisionally free. Thus Theorem 1.6 shows that AH is SPOG with
POexp(AH) = (1, 2, 3, 3) and level 3, which is combinatorial by Theorem 1.8. Now
we can show by case-by-case argument that A is locally free along H and these lo-
cal freeness depends only on L(A). Also, since b2(A) = 48 and b2(AH) = 24, the
b2-equality holds for (A, H). Thus the SPOGness of AH combined with local freeness
along H and Theorem 5.7 shows that A is SPOG with POexp(A) = (1, 2, 3, 3, 3) and
level 3, here 3 = |A| − |AH | = 12 − 9. Also the SPOGness of A is combinatorial by
this argument.
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