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Generalization of the addition and
restriction theorems from free arrangements

to the class of projective dimension one

Takuro Abe

ABSTRACT We study a generalized version of Terao’s addition theorem for free arrangements to
the category of those with projective dimension one. Namely, we give a formulation to deter-
mine the algebraic structure of the logarithmic derivation module of a hyperplane arrangement
obtained by adding one hyperplane to a free arrangement under the assumption that the ar-
rangement obtained by restricting onto that hyperplane is free too.

Also, we introduce a class of stair-strictly plus-one generated (SPOG) arrangements whose
SPOGness depends only on the intersection lattice similar to the class of stair-free arrangements
which satisfies Terao’s conjecture.

1. INTRODUCTION

Let K be a field, V = K¢, and S = Sym*(V*) = K[z1, ..., 2] be the coordinate ring
of V. For the derivation module Der S := @leS&“ and a hyperplane arrangement
A = {Hy,...,H,}, where H; is defined as the zero locus of a non-zero linear form
ap, € V*, the logarithmic derivation module D(A) of A is defined by

D(A) :={0 € Der S | 0(ay) € Sayg (VH € A)}.

The module D(A) is an S-graded reflexive module of rank ¢, but not free in general. So
we say that A is free with exponents exp(A) = (di,...,d;) if D(A) ~ &f_,S[—d;].
In this article exp(A) is a multiset. Also in this article, we assume that all arrange-
ments are essential unless otherwise specified, i.e., NgcaH = {0}. If A # &, then
the submodule generated by the Euler derivation g € D(A) forms a direct summand
of D(A). Explicitly, D(A) = S0p®Dy(A), where Dy (A) := {0 € D(A) | O(apr) = 0}.
So we may assume that d; = 1 = degfg < d; for i > 2 when an essential arrange-
ment A is free.

Free arrangements have been a central topic in the research of hyperplane arrange-
ments. Among them, the most important problem is so called Terao’s conjecture
asking whether the freeness of 4 depends only on the intersection lattice

L(A) == {NpesH | BC A).

In other words, Terao’s conjecture asks whether the freeness is combinatorial. This is
completely open, but it was shown in [15] that the minimal free resolution of D(.A) is
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T. ABE

not combinatorial. To approach Terao’s conjecture, one of the main tools is Terao’s
addition-deletion theorem. For the purpose of this article, we exhibit it in a slightly
different way compared to its usual formulation:

THEOREM 1.1 (Addition and restriction theorems, [11]). Let H € A, A’ := AN {H}
and let A .= {HNL| L € A'}. Assume that A’ is free with exp(A’) = (1,da, ... ,dy).
Then the following two conditions are equivalent:

(1) A is free.

(2) A is free and | exp(A’) Nexp(AH)| = ¢ —1.
If one of these two conditions holds, then for d; := exp(A’) \ exp(Af), it holds that

eXp(A) = (1,d2, e 7di717di + 1>di+17- . .,dg)7
eXp(AH) = (l,dg, . ,di,17di+1, .. .,dz).

In general the condition | exp(A’)Nexp(AH)| = £—1 above is described as exp(A’) D
exp(Af). However, note that |exp(A’) Nexp(AH)| < £ — 1 often occurs even when
both A’ and A are free. So we have the first question in this article:

PROBLEM 1.2. Assume that A’ is free. Then which condition of D(A) makes AT free?
More precisely, are there any explicit condition for D(A) to make A free when A’
s free in terms of freeness, projective dimension, free resolution and so on?

Also, recent developments show the following projective dimensional version of the
addition theorem. Note that A is free if and only if pd A = 0, where pd A denotes the
projective dimension of the S-module D(A).

THEOREM 1.3 ([3, Theorem 1.11)). (1) Assume that pd A’ = pd A” = 0. Then
pdA<1.
(2) Assume that pd A’ =0 and pd A < 1. Then pd A# = 0.

Now we have the second question in this article which is related to Problem 1.2:

PROBLEM 1.4. Can we describe the algebraic structure of D(A) when A’ and A are
both free, but |exp(A’) Nexp(AH)| < ¢ —17

Explicitly, we want to know the minimal free resolution of D(A) under the above
conditions. Contrary to these problems, when A is free, we can describe D(A’), which
was proved in [4]. To see this result, let us recall the definition of strictly plus-one
generated (SPOG).

DEFINITION 1.5 ([4]). We say that A is strictly plus-one generated (SPOG) with
POexp(A) = (1,ds,...,dy) and level d if there is a minimal free resolution of the
following form:

0= 8[—d—1 Yo ol Sl d] e S[—d] — D(A) — 0.

Heredy =1,f; € S and 0 £ o € V*. For the set of generators 0g,02,...,0,0 with
degf; = d; and deg @ = d for the SPOG module D(A), 0g,02,...,0; is called the set
of SPOG generators and 0 the level element.

It was proved in [4] (see Theorem 2.4) that A’ is SPOG if A is free and A’ is not
free. Interestingly, in this case the structure of D(A’) is independent of that of D(A).
However, in general A is neither free nor SPOG even if A’ is free. The typical example
is the case when A’ : H?Zl x; = 0in V = R% Then A is free with exponents (1,1, 1, 1).
If you add H : x1 + 29 + 23 + x4 = 0 to A’ to get A, then it is well-known that A is
neither free nor SPOG. In fact pdg D(A) = 2 in this case.
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Generalization of the addition and restriction theorems

When pd A" = pd A7 = 0, then pd A < 1 by Theorem 1.3. Also Theorem 1.1 shows
that one additional condition for exponents confirms that pd. A = 0. So a weaker
condition for exponents when pd A’ = pd A¥ = 0 could determine the minimal free
resolution of D(A). Namely, we can show the following, which answers Problems 1.2
and 1.4 partially:

THEOREM 1.6. Let A’ be free with exp(A’) = (1,do,...,de)<. Here for the set of
integers (ai1,...,as), the notation (a1,...,as)g means that a1 < ... < as. Let dj <
d:=d; +d; +|A"| — |A'| < dj41 for some i < j. Then the following two conditions
are equivalent:

(1) Af is free with exp(AT) = (1,ds, . .. s, ... ,ch, oy dg) U (d)

(2) Ais SPOG with POexp(A) = (1,dg,...,di+1,...,d;+1,...,d;) and level d.

Theorem 1.6 can be regarded as an extension of the addition and restriction the-
orems (Theorem 1.1). Namely, Theorem 1.6 determines a minimal free resolution of
D(A) as an SPOG-module when | exp(A") Nexp(AH)| = £—2. The condition d < d;j;;
is necessary, see Example 4.8 for details.

Now go back to Terao’s conjecture. As we have seen, SPOG arrangements can be
regarded as a close analogue of free arrangements. Thus to study Terao’s conjecture
by using an inductive approach, it is important to study combinatorial dependency
of SPOG arrangements. For that purpose, let us introduce the following class of
arrangements.

DEFINITION 1.7. We say that A is stair-SPOG if there is H € A such that both
A = A~ {H} and A" are stair-free (see Definition 2.6 and Theorem 2.7), and
exp(A’), exp(AH) and |A'| — |AH| satisfy the conditions in Theorem 1.6. Let S,
denote the set of stair-SPOG arrangements in an ¢-dimensional vector space and let

S = U Sg.

>2

THEOREM 1.8. A is SPOG if A € S. Moreover, if there are A, B such that A € S and
L(A) ~ L(B), then B is SPOG too.

The organization of this article is as follows. In §2 we introduce several results
and definitions for the proof of the main results in this article. In §3 we prove some
useful results on the cardinality of the set of minimal generators. In §4 we prove the
main results of this article. Several examples are also exhibited in §4. §5 is devoted
to investigate the relation between Ziegler restriction of an arrangement and their
SPOGness by using the methods introduced in the previous sections.

2. PRELIMINARIES

In this section let us introduce several definitions and results for the proof of the
main results in this article. First recall some combinatorics of arrangements. For the
intersection lattice L(A), we can define the Mobius function u : L(A) — Z by
w(V) =1 and by
p(X) =~ >y
XQYCV, YEL(A)

for X € L(A) \ {V}. The generating function of p is called the characteristic
polynomial of A defined by

X(Ast) = > p(X)tim X,

X€eL(A)
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which is a combinatorial invariant. The absolute value of the coefficient of ¢*~* in
Xx(A;t) is called the i-th Betti number of A and denoted by b;(A). Next let us
recall several useful results on D(A).

THEOREM 2.1 (Terao’s polynomial B, [11]). Let C ~ {H} = C’. Then there is a ho-
mogeneous polynomial B € S of degree |C| — 1 — |CH| such that

D(C')(om) == {0(an) | 0 € D(C')} C (am, B).
We call such B a polynomial B of (C,H).

THEOREM 2.2 (Terao’s factorization theorem, [12]). Assume that A is free with
exp(A) = (dy,ds, ..., ds), then
¢

x(Ast) = H(t—di).

i=1

For H € C and C' := C \ {H} we have the following Euler exact sequence
(2.1) 0— D) X D)L D).

Here for § € D(A) and the image f € S/ayS of a polynomial f € S by the
canonical surjection S — S/apyS, p(#) is defined by

p(0)(f) := 0(f).
The Euler exact sequence is not right exact in general, but it is so when C’ is free as
follows.

THEOREM 2.3 (Free surjection theorem (FST), Theorem 1.13, [3]). Let C =C' U{H}
and assume that C' is free. Then p = p : D(C) — D(CH) is surjective.

Next let us introduce the results on freeness and SPOGness.

THEOREM 2.4 (Theorem 1.4, [4]). Let A be free with exp(A) = (dy,...,de), H € A
and assume that A" := A~ {H} is not free. Then A" is SPOG with POexp(A’) =
(dy,...,dy) and level d := |A'| — | AT

THEOREM 2.5 (Division theorem, Theorem 1.1, [1]). Assume that A is free and
X(AH:t) | x(A;t). Then A is free. Thus if we can show the freeness of A by using
the division theorem several times, then the freeness of A is combinatorial, and such
a free arrangement is called a divisionally free arrangement.

DEFINITION 2.6 (Definition 4.2, [5]). We say that A is stair-free if the freeness of A
can be proved by using the addition and division theorems.

THEOREM 2.7 (Theorem 4.3, [5]). If A is stair-free, then its freeness depends only
on L(A).

Finally let us recall the fundamentals of the multiarrangement theory introduced
by Ziegler in [16]. A pair (A, m) is a multiarrangement if A is an arrangement and
m: A = Zso. Multiarrangements were defined by Ziegler in [16] and used in several
research of arrangements. We can define their logarithmic derivation module D(A, m)
as follows:

D(A,m) :={6 € Der S | B(a) € Sa ™) (VH € A)}.
Then their freeness and exponents can be defined in the same manner as for D(A). For
details, see [16]. We have a canonical way to construct a multiarrangement from .A.
Let H € A. Then the Ziegler multiplicity m : A¥ — Z is defined by

mf(X):={Le AN{H} | HNL = X}|
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The pair (A7, m*) is called the Ziegler restriction of A onto H. Also recall that
for H € A, the submodule D (A) of D(A) is defined by

Dir(A) i= {6 € D(A) | 8a) = 0}.
Since D(A) = S0r @ Dy (A) by the splitting exact sequence
0— S0 — D(A) — Dy(A) =0

with the map D(A) 2 6 — 6 — a(aa—:)GE € Dy (A) and the canonical inclusion as a
section, we know that A is free if and only if Dy (A) is free. Then Dp(A) is closely
related to D(A, m*) as we can see in the following several results:

THEOREM 2.8 ([16]). There is an exact sequence

(2.2) 0— Dy(A) X Dy(A) = DA, m).
Here 7 := p|p,,(a). This is called the Ziegler exact sequence. Moreover, if A is free
with exponents (1,da, ..., dy), then (AT, mf) is also free with exponents (da, ..., d;).

THEOREM 2.9 (Theorem 5.1, [7]). Let 7 : Dy (A) — D(AH,m™) be the Ziegler re-
striction of A onto (AH m™). Then the preimages of a set of generators for Im(r)
by 7 generate Dy (A).

THEOREM 2.10 (Yoshinaga’s criterion, Theorem 2.2, [13]). A is free if and only if A
is locally free along H (i.e., Ax is free for all 0 # X € L(AM)), and (A", m™) is
free.

For a multiarrangement we can introduce the concept of SPOG multiarrangements
as follows.

DEFINITION 2.11 ([6]). We say that (A,m) is SPOG with POexp(A,m) =
(d1,da,...,de) and level d if there is a minimal free resolution of the following
form:

0= S[—d—1] Tl gt sl-dj) @ S[-d] — D(A,m) =0
with 0 # a € V*.

3. CARDINALITY OF MINIMAL SETS OF GENERATORS

In this section we show some new results on the cardinality of a minimal set of
generators for D(A), which will play a key role to prove our main theorem.

DEFINITION 3.1. For an arrangement A, let g(A) denote the cardinality of a minimal
set of generators for D(A). Clearly it is independent of the choice of the set of minimal
generators.

Moreover for A = A" U{H} we define an integer for a free arrangement A’ that
measures how far D(A’) is from being tangent to H.

DEFINITION 3.2. Let A = A'U{H} and assume that A’ is free. Let FB(A’) be the set
of all homogeneous basis for D(A’) and for each B := {61,...,0,} € FB(A') define

NT(B) :=|{i | 1<i </, 0; ¢ D(A)}|,

and define
SNT(A") := min{NT(B) | B FB(A")}.

First we record the following easy facts.
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LEMMA 3.3. Assume that A" and A" are both free. Then g(A) < 20— 2.

Proof. By Theorem 2.3, we can choose 6g,0s,...,0,_1 € D(A) as preimages of the
basis for D(AH) by p. Let 0, 2, ..., ¢ be a basis for D(A’). Then the Euler exact
sequence (2.1) shows that
QE, 92, ey ag_l,ozH(pQ, e, Qe
generate D(A), hence g(A) <l —1+{¢—-1=20-2. O
On g(.A) the following proposition is fundamental.
PROPOSITION 3.4. Let A" be free with SNT(A') = s. Let 0g,0s,...,0, form a basis
for D(A") such that 0; ¢ D(A) (2 <i<s+1)and 8; € D(A) (i > s+ 2). Then
g(A)y = Ll+s—1.
Proof. Let ay = x1. By the assumption on 0,02, ..., 0, it is clear that we can
choose derivations ¢; € D(A) (j = 1,...,k) of the form S°*) 76, such that f/ €
S":=Klxs, ...,z are of positive degrees, and
Op,apbs,...,ap0s41,0542,...,0;
together with the derivations ¢; (j = 1,...,k) form a minimal set of generators
for D(A). Since their images by p generate the rank (¢ — 1)-module D(A¥) due to
Theorem 2.3, we can compute
|{9E>95+2a-~-79€7(P1a-~-7§0k}| =k+14+0—s—1=F+k—s>(—1.
Sog(A)=~L+k>(+s—1. O
Next let us show a key result to prove Theorem 1.6.
PROPOSITION 3.5.Let 1 < i < j < {, and let A" be free with SNT(A') = 2.
Let 0g,02,...,00 be a basis for D(A’) such that 0, € D(A) (k #i,5). Let 0;(ay) =

fiom + g:B, 8;(an) = fjan + g;B by Theorem 2.1. Then (g;,9;) = 1 and D(A) is
generated by {0k }rzi; U{anbi, anb;, g;0; — g:0;}. In particular, A is SPOG.

Proof. The proof is essentially the same as that of [4, Theorem 1.9] (see [10, Propo-
sition 3.6] too). For the completeness, let us give a sketch of the proof. We may
assume that oy = =1 and let (g;,9;) = g € S. Let ¢, = gh;, g; = gh; with
(hi,hj) = 1. Then clearly x16;,2160;,¢ := h;0; — h;0; € D(A). By definition, we
can choose g;,9; € Klxo,...,x¢] =: S’ so we may assume that h;,hj,g € S’. First
let us prove that {€x}rxi; U {z16;,210;, 9} generate D(A). Let 6 € D(A). Since
D(A) c D(A’), there are aj, € S such that

14
0= Z aka.
k=1

Since {0k }rzi,; C D(A), it suffices to show that 6 — Zk#,j aplp = a;0; + a;b; is
expressed as a linear combination of x10;,z10;, ¢. Let us replace 6 — Zk#i ; Ok by 6.
Then we can express

0= bz(xlt%) + bj(xlt?j) + ¢;0; + Cjaj
for some b;,b; € S, ¢;,¢; € S". Thus
H(xl) = blxlﬁz(xl) + bj:vlej(xl) + clﬂi(xl) + cjﬁj(xl).

Taking the modulo 21 = ay combined with Theorem 2.1 (see the proof of [4, Theo-
rem 1.9] for details), we know that

Ciai + Cjoj = c(h]ﬂi — hZHJ) + C/[El
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for some ¢, ¢’ € S. As a conclusion, it holds that 6 € S0; + S0; + S¢, and
D(A") = ({0} rzig U {105,210, ¢}) 5.

By comparing the second Betti number of A calculated combinatorially and algebro-
geometrically (see the proof of [4, Theorem 1.9] for details), we can see that h is a
unit. Thus in fact

D(A") = ({0} ki U {210, 2105, 9;0; — gi0; })s.

A minimal free resolution of D(A) is easily obtained by the form of this minimal set
of generators, which completes the proof. O

An immediate corollary of Proposition 3.4 is as follows:
COROLLARY 3.6. Let A’ be free and assume that g(A) =€+ 1. Then A is SPOG.

Proof. By Proposition 3.4, g(A) = £ + 1 only when s < 2. s = 0 cannot occur, and
s = 1 implies that A is free by the addition theorem, thus g(A) = £. So the rest case
is when s = 2. In this case, Proposition 3.5 shows that A is SPOG. 0

Since the freeness of A and A’ implies that pd A < 1 by Theorem 1.3, it is natural
to study which condition on g(.A4) makes the arrangement A free.

THEOREM 3.7. Let £ > 3 and A’ be free. Then A™ is free if g(A) < £+ 2.

Proof. By the addition and restriction theorems, Theorem 2.3, Corollary 3.6 and
the explicit form of the set of SPOG generators as in Proposition 3.5, the statement
follows if g(A) < £+ 1. Assume that g(A) = £+ 2. Then by Proposition 3.4, we have
a basis 0g,0s,...,60, for D(A’) such that 6; ¢ D(A) for i > £ — 2 and 0; € D(A)
for i < £ — 3. We may assume that oy = 1. Then clearly D(.A) has a minimal set of
generators with cardinality ¢ + 2 of the form

0p,02,...,00—3,2100_2,710,—1, 2100, 01, P2,

by the same argument as in the proof of Proposition 3.4 or 3.5, where ¢; is a lin-
ear combination of 0y_o,0,_1,6, over K[zs,...,x¢]. By Theorem 2.3, the images of
05, 02,...,00_3,01,p2 by p have to generate D(AH). Since rankS/QHsD(AH) =(-1,
it holds that A is free. O

By using results above, we can show the following proposition which is fundamental
on the relation between free and SPOG arrangements.

PROPOSITION 3.8. Let A be SPOG, H € A and A" := A~ {H}. If A’ is free, then
there are a set of SPOG generators 01 = 0,05,...,0p, a level element ¢ and two
distinct integers 1 < s < t < £ such that

GE,GZ, ey os—la es/aHaes+1a ceey gt—la et/aH,et—&-la ) 02
form a free basis for D(A’).
Proof. By Proposition 3.4 and the assumption that g(A) = ¢ + 1, for the ba-
sis 0, pa,...,p for D(A'), we may assume that ¢; € D(A) (i < £ —2) and
@e—1,p¢ & D(A). Then

OF, @2, .-, Pe—2, CHPe—1, CH P, fepe—1 — fr—1900

form a minimal set of generators for D(A), where ¢;(ar) = f;B modulo oy for

1 = /¢ —1,¢ and B is Terao’s polynomial, which give the required set of generators
for D(A). O
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4. PROOF OF THE MAIN RESULTS

In this section let us prove Theorems 1.6 and 1.8. For that, let us introduce the
following two results.

LEMMA 4.1. Let N C M be S-graded free modules. Let 01, ...,0, be a homogeneous
basis for N with degfy < --- < deg,, and ¢1,. .., on+t be a homogeneous basis for M
with deg w1 < -+ < degpnye. If degf; = degy; for 1 < i < n, then we may choose
01,00, Oni1,s---,Ont as a basis for M.

Proof. This is essentially the same as Theorem 4.42 in [9], but we give a proof for
the completeness. Let d; := degf; = deg ;. We prove by induction on 1 < i < n.
Let 61 € N C M. Let ¢1,...,ps be of degree dy and ds11 > dy. Then

S
0 = Z Cip;
=1

for constants c¢q,...,cs € K. We may assume that ¢; # 0. Then we can choose
01,02, ...,0ntt as a basis for M.
Now assume that 0; = ¢; for 1 < i < k — 1. Let us prove that we may choose
0r = pi. Again by 0, € N C M, we can express
k—1

O =D fifli + crpr + -+ + s,
i—1

where d, = -+ = ds < dsy1 or s = n+t. If ¢; = 0 for all ¢, then 6y,...,0k
are not independent over S. So we may assume that ¢, = 1, and we can choose
O1,...,0k, Qk+1,---,Yntt as a basis for M. 0

LEMMA 4.2. Let H € A, A’ :== A~ {H} and assume that A" and A" are both free.
Let o1 = Op,pa,...,00 form a homogeneous basis for D(A") with degyp; =: d; <
diy1 = degwiy1 for all i. Assume that there are an integer 1 < k < £, finite subsets
Ic{l,....k—1}=:[k—1], T, and derivations

G :={piticr U{d; = anv;}tjem—1~1 U {¥t}ter U -
in D(A) which satisfy the following conditions:
(1) 9 is a linear combination of {@;}jek—1)~1 over S for allt € T, and degn, =
degpy, =dy, for allk <u <Y,
(2)
max{deg¢;,deg ¢;,degty, |i €I, je[k—1\I,teT}

u <l

degn,

for all k
(3)

2
<

(@ Se)NDA) = > S¢;+> St

JER—1NT GEk—1]NT teT
and
(4) the image of G~ {¢;}jem—1)~1 by the Euler restriction map p form a basis
for D(AM).
Then the S-module generated by
G = {pitier U{d;}jem—1)~1 U {¥eteer U {putiok

coincides with the S-module generated by G.

Algebraic Combinatorics, Vol. 7 #2 (2024) 420



Generalization of the addition and restriction theorems

Proof. Let J := [k — 1] ~ I. We prove by induction on k& < u < £. Assume that
Ng = 0, for k < a < uw—1, and let us show that we can choose 7, = ¢,. Since
N € D(A) C D(A’), we can express

0
Ny = Z 9aPa
a=1

for some g, € S. Since we are interested in sets of generators, we may replace n, —
> ic1 9ii by m to get an expression

u—1 4
M=) 0j@;+ Y Gala+ Y JaPa-
a=k a=u

jeJ
Let dy, = --- = dp < dp41 or b = L. Then replacing 1, — ZZ;; Gala DY 1, We obtain
b
T=Y_9j¢; + Y JaPa-
jeJ a=u

Assume that Zzzu Jawa 7 0, say g, = 1 by the reason of degrees in the conditions (1)

and (2). Then replacing ZjeJ gipi + ZZ:u JaPa DY @y, we can choose 1, as p,. So
assume that all g, = 0 for u < a < b. Then

= gi%;-

jeJ

Since 7, € D(A), the condition (3) shows that

Ma =D hidj+ > hithy

jeJ teT

for some hj, h; € S. Sending it by p, the Euler exact sequence shows that

p(nu) — thp(m) =0,

teT

contradicting the independency of the basis for D(Af) in the condition (4), which
completes the proof. O

Proof of Theorem 1.6. First we prove (2) = (1). It is easy to see that, for the
basis g, ¢a2,...,pe for D(A’) with degyr = dg, the set of SPOG generators for
D(A) is of the form {0y} ; U {0k }r=i; U{f;j0; — fi0;} by Proposition 3.8. Thus
Theorem 2.3 shows that D(A™) is generated by the image of {0} jU{f;0; — fif;}.
Since rankg D(Af) = ¢ — 1, it follows that A is free with the given exponents.

Next we prove (1) = (2). Assume that A is free with the given exponents above.
In this assumption, Terao’s addition theorem shows that A is not free since exp (A7) ¢
exp(A’). By Theorem 2.3, the Euler restriction map p : D(A) — D(AHY) is surjec-
tive. Thus there are S-independent derivations 0, s, . ..,0;, ..., éj, ...,00,0 € D(A)
such that degfy = di, degf = d, and their images by pf form a basis for D(AH).
Let 0 = v1,92,...,0¢ be a basis for D(A") with degyr = dp. We may assume
that d; < d; 41 and d; < d;41 or j = £. Since D(A) C D(A’), it holds that

i—1 i—1
@D Sbx C D S
k=1 k=1

So by Lemma 4.1, we can choose ¢y = 0 for k < 1.
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Next let us show that ¢; ¢ D(A). Assume that ¢; € D(A). Recall that d; < d;41.
So p(p;) € D(AH)4, is a linear combination of p(6;),...,p(#;_1). Hence
i—1
$i — Zfses S aHD<A/)
s=1
for some f; € S. Thus replacing ¢; — Z;;ll fs0s by @i, it holds that ¢;/ag € D(A’),
contradicting the minimality of the basis O, o, ..., e for D(A’). So ¢; € D(A).
Hence D(A) N (Sg¢;) = Sapp;. Now apply Lemma 4.2 to obtain that 6; = ¢, for
1<s<i—1,i+1<s<j— 1 Moreover, the same proof as that of p; & D(A)
shows that ¢; ¢ D(A).
Now express 0 in the following form by using the fact that d = deg < dj1:

Jj—1 D
(4.1) 0= fibk+ Y arpr+ figi + fis.
itk=1 k=j+1
Here dj11 = --- =d, = d < dpyy1 and ai € K. First assume that a; = 0 for all .
Then replacing § — ZZ;;:l fr0r by 0, we have
(4.2) 0 = fivi + fe;-

By the independency of images of 0, and 6 by p, at least one of f;, f; is not zero.
Assume that only one of them is not zero, say f; # 0 and f; = 0. Then (4.2) combined
with the fact that ¢; ¢ D(A) shows that ay | f;. So pf(8) = 0, a contradiction.
Thus both f; and f; are not zero. Recall that ¢;,p; ¢ D(A). Thus the same proof
as Proposition 3.5 shows that, letting ¢;(ay) = ¢;B, ¢;(an) = g;B modulo ag,
(gi,gj) = h, g; = hh;, gj = hh; and (hi,hj) = 1, it holds that ¢ := h;p; — hyp; €
D(A). Note that g;,g;, hi, hj,h € S := K[z, ...,z¢]. By the construction, degy <
d=degf=d; +d; — |A|+ |A”| = d; + d; — deg B. Assume that deg¢ < d. Send ¢
by p, then we have

j—1

@ = hjp; — hip; = Z bsps + am(bipi +bjp;)

i#£s=1
for some b, € S. Thus ay | h; and ag | bj, contradicting h;, h; € S’. Thus we may
assume that h = 1 and deg(g;; — gj¢;) = d = deg 6. Hence the equation (4.2) shows
that

0 =gip; — 9;pi
modulo ag.
Second assume that aj # 0 for some k in the equation (4.1). Then we may assume

that aj41 = 1 and the equation (4.2) in this case is as follows:

P
(4.3) 0= fipi + fi5 + @i+ D arpr
k=j+2
Replacing fipi + fipj +@j+1+ ZZ:]-JFQ akpr by pj+1, we may assume that 0 = ¢;11.
Continue this for 6;11,...,0,, then we obtain either 0 = Yr11, or O = gi; — gjpi
modulo ay for j + 1 < k < p. So exchanging an appropriate 85 by 6, we obtain that
0 = g;0; — g;0; modulo apy. Hence in both cases,

D(A)YN (Sp; & Sp;) = Sapp; + Sagp; + 56.

Thus applying Lemma 4.2, we obtain that @5 = 0, for all 1 < s < £ with s # ,j and
©i,; & D(A). Therefore, Proposition 3.5 shows that A is SPOG with POexp(A) =
(l,dg,...,di+1,...,dj —|—1,...,dg) and level d = di—I—dj - |A/| + |.AH‘ O
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The following case is the most practical to apply Theorem 1.6.

COROLLARY 4.3. Let A’ be free with exp(A') = (1,da,...,d¢)< and d := d; + d¢ +
|Af| — | A"l > dy for some i. Then the following two conditions are equivalent:
(1) A" is free with exp(AT) = (1,da, ..., ds, ..., de_1) U (d)
( ) A is SPOG with POGXP(A) (1,d2, ey difl,di + ]., di+1, . 7d271, dg + ].)
and level d.

Proof. Clear by the proof of Theorem 1.6. O
Let us apply Theorem 1.6 to some examples.

EXAMPLE 4.4. Let A be the Weyl arrangement of the type A4 defined by

sz H —x;)=0.

=1 1<i<jga
A is well-known to be free with exp(A) = (1,2,3,4). Let A Z H : 1 —xo+2x3—2x4 =
0 and let B:= AU{H}. Then |[Bf| =9 < 10 = |A|. It is easy to show that B is free
with exp(Bf) = (1,4,4). Note that

d:=2+3— A +|B|=5-1=4.

In this setup, from exp(A) = (1,2, 3,4), the integers 2 and 3 are removed and d = 4
coincides with the remaining integer 4. Hence we can apply Theorem 1.6 to obtain
that B is SPOG with POexp(B) = (1,3,4,4) and level 4.

Note that Q(B) is

1123?3.’174(5(52 — $3)($2 — .%’4)(.’1?3 — .’1?4)(372 —2x3 + 2.1’4)(.’172 —3x3 + 23?4)(.1‘2 — 2x3 + .1?4).

Let L : x5 = 0 and let C := B¥"E_ Then it is easy to show that x(C;t) = (t—1)(t —4)
and x(B¥;t) = (t — 1)(t — 4)%. Thus B¥ is divisionally free as in Theorem 2.5.
Since A is divisionally free too, by Theorem 2.2, the freeness and exponents of A
and B are both combinatorial. Thus Theorem 1.6 shows that the SPOGness of B is
combinatorially determined.

Proof of Theorem 1.8. Clear by Theorems 1.6 and 2.7. 0

We can use Theorem 1.6 to show the combinatorial freeness of arrangements by
using a non-free but SPOG arrangements. Let us check it by the following example:

ExAMPLE 4.5. Let A be the Weyl arrangement of the type By defined by

sz H 7 — :c?) 0.

i=1  1<i<j<4
Let A" := A~ {H}, where H : x1 = 0. Let L : 1 + x2 + x3 = 0. We know that A’
is divisionally free with exp(A’) = (1,3,5,6), and (A’ U{L})’ is also divisionally free
with exp(A’ U {L})) = (1,5,7). Thus Theorem 1.6 confirms that B := A’ U {L}
is SPOG with POexp(B) = (1,4,5,7) and level 7. Next let C := BU {H}. Then
ICH| =9, so |[B| — |CH| = 16 — 9 = 7. Thus the set of generators of degrees 1,4,5
for D(B) are in D(C) too, and we may assume that one of two generators of degree 7
is in D(C) by Theorem 2.1. Since the relations in D(B) are among three derivations
of degrees 4,7,7 by the explicit construction of the set of SPOG generators and a
level element in Proposition 3.5, we know that these 4-basis elements in D(C) are S-
independent. So C is combinatorially free with exp(C) = (1,4, 5, 7) since the SPOGness
of B and |C| are both combinatorial.
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Unfortunately, there are cases in which A’ and A¥ are free, A is SPOG but The-
orem 1.6 cannot be applied.

EXAMPLE 4.6. Let A be the Weyl arrangement of the type A4 and let H : z1+xo+ax3 =
0. Say that B := AU {H}. Then B is free with exp(BH) = (1,4,5) ¢ (1,2,3,4) =
exp(A). We can check that B is SPOG with POexp(B) = (1,3,4,4) and level 5 by
using Macaulay2 in [8], but we cannot apply Theorem 1.6.

PROBLEM 4.7. Generalize Theorem 1.6 to all cases when A’ and A" are free, 1 —2 <
|exp(A") Nexp(AT)| <€ —1 and A is not free.

In fact, to apply Theorem 1.6 the condition d < dj4; is necessary. Let us see the
following example.

EXAMPLE 4.8. Let A’ be an arrangement in R* defined by
4 4 4

Q(A/) = (Il + To + T3 + I4) HI,’ H(CEl + IZ) H(Il + X9 + I3 + Xrq — SCZ)
=1 =2 i=2
Then A’ is free with exp(A’) = (1,3,3,4). Let H = zo+2x3+x4 and let A := AU{H}.
Then AH is free with exp( A7) = (1,4,5). So exp(A") Nexp(AH) = {1,4}. However,
Macaulay2 in [8] shows that Dg(A) := D(A)/SOg is not SPOG but has a following
minimal free resolution:

0 — S[-5] @ S[-6] — S[-4]* ® S[-5]* — Dy(A) — 0.

Since d = 5 = 3+ 3 — |A’| + |A| > 4, the condition d < d;1 in Theorem 1.6 is
necessary.

If we remove the assumption on exp(A’) and exp(A¥) in Theorem 1.6, we have an
example related to Problem 4.7.

EXAMPLE 4.9. Let
4 3 3
QA" = Hﬂ% H o7 — 23)(zF — 4a7) I_I(xz2 —927) (23 — 1623).

i=1  i=1 =2
Then A’ is free with exp(A’) = (1,5,7,9). Let Hy : z0+ 23+ Ty =0, Hy : 21 + 22 +
z3 = 0, and let A; := A" U{H,}. Then A, is SPOG with POexp(A;) = (1,5,8,10)
and level 15. So Theorem 1.6 shows that .A{h is free with exponents (1,5,15) and
vice versa. On the other hand, A% is free with exponents (1,10,11), and D(Ay) has
a minimal free resolution

0— S[-11] @ S[—12] — S[-6] @ S[-8] ® S[—10]> & S[—11] — Dy(As) — 0.

So in general, it can happen that A is of projective dimension one, is not SPOG, but
A’ and A are both free. Note that the freeness of A follows from g(A) < 6 and
the freeness of A’ by Theorem 3.7.

5. ZIEGLER RESTRICTIONS AND SPOG ARRANGEMENTS

Let us study a method to check whether A is SPOG or not by using Ziegler restrictions,
i.e., a theory of multiarrangements. First recall the following two results which we will
use later.

THEOREM 5.1 (Theorem 2.3, [13]). Let E be a reflexive sheaf on P™ (n > 3) and as-
sume that E is locally free except for a finite number of points in P™. Then H*(E(e)) =
0 for all e << 0.
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PrOPOSITION 5.2 (Proposition 2.5, [6] and the equation (1.5), [14]). Let A be an
arrangement in V. and m be a multiplicity on A. Then

Beer HO(D(A,m)(e)) = D(A,m),

where D(A,m) is a sheaf on Proj(V') obtained as the coherent sheaf associated to the
module of D(A,m).

Next, we prove the characterization of SPOG arrangements in terms of that of the
Ziegler restrictions as follows:

PROPOSITION 5.3. Assume that m : Dy (A) — D(A" m™) is surjective, A is not
free and D(A® m™) is SPOG with POexp(A” , m*) = (da,...,d¢_1,ds) and level d.
Then A is SPOG with POexp(A) = (1,ds,...,ds) and level d.

Proof. Since 7 is surjective, there are 6, ..., 6,0 € Dy (A) such that w(6s),...,7(6)
form a set of SPOG generators for D(A” m*) with a level element 7(6). For ¢ €
Dy (A) let @ denote its image by the Ziegler restriction map 7. Since = is surjective,
Theorem 2.9 shows that 65, ..., 0., 6 together with 5 generate D(A). Let

¢
af = Zﬁgz
i=2
be the unique relation in the SPOG module D(A* mf), where ag # o € V* and
fi € S. Then its preimages are of the form

14

af — Z fibi € OzHDH(.A)
i=2
by the Ziegler exact sequence (2.2). Since Dy (A) = (02, ..., 0, 0)s which is a minimal

set of generators because of the non-freeness of Dy (A) and rankgDp(A) =€ —1, it
holds that

4 4
ab = fi0; = an (> gib; + o)
1=2 1=2

for some g; € S and ¢ € K. Since @ # 0, we have a relation

¢
(5.1) (o — cam)f — Z(fi +angi)ti =0

=2

in D(A).
On the other hand, assume that there is a relation

4
hi0g + Y hif; +ho =0

=2

in D(A). Since we have a decomposition D(A) = SO @ D (A), we may assume that
hy = 0. Since we have to determine the second syzygy, take a free module

M := Se + @_,Se;
such that by the map G : M — Dy (A) defined by
G(el) = 97 (7’ = 2a s 76)7 G(e) = 07

M becomes the first syzygy of Dg(A). Since 0s,...,0,,6 form a minimal set of
generators for Dy (A) and their images by 7 form a minimal set of generators for
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D(A m™), by the nine-lemma, we have an exact commutative diagram as follows:

0 0 0
0 K M—S55 Dy(A) 0
0 KaH MaH & DH(:)I 0
0— >5[ -d—1 —— Mﬂ—gD(AH,ﬂmH) — 0

So what we are assuming is that

¢
(5.2) Zhiei + he € ker(G) = K.
i=2

Sending this by 7, the commutativity shows that

¢
ZE‘E‘ + he € ker G.
i—2

Since D(AH,m™) is SPOG, ker G is generate by the unique relation

of degree d + 1. Thus the exactness of the middle column in the diagram shows that

¢ ¢
(5.3) Zhiei—i—he: F(ae—Zfiei) +agyp
i=2 i=2
for some F € S and ¢ € M. Rewrite (5.3) into the following way:
¢ ¢ ¢
Z hie; + he — F{(a — cap)e — Z(fl + apgieit = ag(Fee + FZgiei + ).
i=2 i=2 i=2

By (5.1), the left hand side of the above is in ker(G). So is the right hand side. Since
ag #0in S and Dy (A) is torsion free, we know that

¢
Fce + FZgiei + ¢ € ker(G).
i=2
So we have a new relation among 0s, ..., 0y, 0 but the degrees of this relation is lower
than the original relation (5.2). Since the lowest degree relation in D(A” mf) is
at degree d + 1 by the assumption, the lowest degree relation among 6s,...,60,,60 in
Dy (A) is (5.1), which is of degree d 4+ 1. Hence applying the same argument to this
new relation continuously, we can show that all the relations among 65, ...,0y,0 are
generated by the unique relation (5.1), i.e., K ~ S[—d — 1]. Therefore, A is SPOG
with the desired exponents and level. O
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To introduce the main result in this section let us recall some definitions and facts
on the freeness.

DEFINITION 5.4 (Proposition 3.6, [1]). For H € A, the by-inequality for (A, H) is
the inequality

by (A) = ba(AT) + [AT|(|A] — |AT)).
Moreover, we say that the be-equality holds for (A, H) if

ba(A) = ba(A™) + [AT|(|A] - |AT]).

THEOREM 5.5 (Theorem 3.6, [2]). (1) The by-inequality holds for all A and H €
A.
(2) A is free if the by-equality holds for (A, H) and A is free.
THEOREM 5.6 (Theorem 3.1, [2]). Let H € A and assume that the bs-equality holds
for (A,H). If 0g,0,...,0, form a minimal set of generators for D(A™), then we
may assume that o, ...,0, € D(A" m*) and

Q(AM,m")
QAM)
form a set of generators for D(A™ , m™). Moreover, they form a minimal set of gen-
erators unless (A", mf) is free.

0g,02,...,00

Now we have the following result for SPOGness.

THEOREM 5.7. Let £ > 5. Let A > H and assume that A is not free, A7 is SPOG,
the bo-equality holds for (A, H) and A is locally free along H, i.e., Ax is free for all
X € L(A") < {0}. Then A is SPOG with POexp(A) = POexp(A7) U (JA] — |AH])

and the same level as AH.

Proof. By Proposition 5.3, it suffices to show that 7 is surjective and (A", m*)
is SPOG. First, let us show that pdg D(AT mH) < 1. Since the by-equality
holds, Theorem 5.6 shows that, for a set of SPOG generator and the level
element 0p,03,...,0,_1,0 for D(A") with 6,,...,0,_1,0 € D(AT mf), we
know that Q'0p,0s,...,0, 1,0 form a set of generators for D(AH mM). Here
Q' = QAT mM)/Q(A™). If (AH ,m™) is free, then clearly pdg D(AH, m*) = 0.
So assume that (AX,m*) is not free. Since rankgD (A, m*) = ¢ — 1, it holds that
Q'05,0s,...,0,_1,0 form a minimal set of generators by Theorem 5.6. Since A is
SPOG, letting 6, := 6 as a level element, there are a non-zero o € V* and f; € S
such that

-1
(5.4) Fifp +>  fibi+ a0, =0

=2
which is the unique relation in D(Af). Again by Theorem 5.6, 6; are in D(AH m™).
Thus Q' | fi. Hence (5.4) is also a relation among a minimal set of generators in
D(Af m™) obtained above. Since every relation among this minimal set of generators
for D(AH,mf) is also a relation in D(A), the fact that A is SPOG shows that
D(AH m™) also has the unique relation (5.4). Hence in this case (AH, m*) is SPOG.
So in each case, pdg D(AH ,m™) < 1. In particular, since H ~ P2 and £ —2 > 3, it

—_~—

holds that H'(D(AH m#)(e)) =0 for all e € Z.
Second, let us prove the surjectivity of m. Since 7 is locally free along H, Theo-
rem 2.3 shows that 7 is locally surjective. So we have the sheaf exact sequence

—_~—

0— Dy(A) X Dy(A) 5 D(AH, mH) - 0.
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Since H*(D(AH mH)(e)) = 0 for all e € Z as above, the map
H'(Dy(A)(e — 1)) = H' (D (A)(e))
is surjective. Note that there are at most finite number of non-local free points of

Dy (A). Assume not, then there is X € L(A) such that Ax is not free and dim X > 2.
Then it has the intersection with H of dimension at least one, contradicting the local

P

freeness of A along H. Thus Theorem 5.1 shows that H!(Dp(A)(e)) = 0 for all e € Z.
By using Proposition 5.2, it holds that = is surjective.

Finally let us show that D(A® m*) is SPOG. By Yoshinaga’s criterion (Theo-
rem 2.10) and the surjectivity of 7, it holds that (A®, m*) is not free. Thus the first
investigation of the generators for D(A mf) shows that (A7, mf) is SPOG. O

EXAMPLE 5.8. Let

5
Al ::Hxi H (x; —x;) = 0.

i=1  1<i<j<5
Then define
A=A~ {z1 =0,25 = 0,29 = 3,21 = T2}
Let {1 = z5} = H € A. Then by choosing appropriate coordinates z,y, z for H*,
AH is isomorphic to

zyz(z —w)(y —w)(z —w)(z - 2)(y —2) = 0.

Let {y = w} = X € A”. Then A" \ {X} =: B is easily checked to be divisionally free
by Theorem 2.5, with exponents (1,2,2,2) and AX is free with exponents (1,2,3),
which is also divisionally free. Thus Theorem 1.6 shows that A is SPOG with
POexp(AHf) = (1,2,3,3) and level 3, which is combinatorial by Theorem 1.8. Now
we can show by case-by-case argument that A is locally free along H and these lo-
cal freeness depends only on L(A). Also, since by(A) = 48 and by(Af) = 24, the
by-equality holds for (A, H). Thus the SPOGness of A combined with local freeness
along H and Theorem 5.7 shows that 4 is SPOG with POexp(A) = (1,2,3,3,3) and
level 3, here 3 = |A| — |Af| = 12 — 9. Also the SPOGness of A is combinatorial by
this argument.
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